
Collaborative Virtual Training Using Force Feedback Devices

Maria Andréia Formico Rodrigues1, Ricardo Régis Cavalcante Chaves1, Wendel Bezerra Silva2

1Mestrado em Informática Aplicada

Centro de Ciências Tecnológicas
Universidade de Fortaleza (UNIFOR)

Av. Washington Soares 1321, sala J30
60811-905 Fortaleza-CE-Brasil

mafr@unifor.br, rchaves@edu.unifor.br

2Bacharelado em Informática

Centro de Ciências Tecnológicas
Universidade de Fortaleza (UNIFOR)

Av. Washington Soares 1321
60811-905 Fortaleza-CE-Brasil

wendel@edu.unifor.br

Abstract

Force feedback plays an important role in

collaborative virtual reality environments, mainly for
programmers of haptic visualization tools. Whereas a
great deal of work has gone into graphical displays
over the past years, little has changed on the input
side. One of the problems that has slowed down
development in this area is the difficulty of integrating
the visualization of a scene, the interaction of the user
with the scene, the feeling for the user to be immersed
inside the scene, and finally, the input devices. In this
paper, we describe the architecture we have designed,
implemented and tested for a collaborative virtual
training using force feedback devices. In particular, it
provides device independence and easy extensibility
through a compartmentalized and multilayered model.
We also present examples of how force feedback
joysticks can be integrated into training exercises
using our prototype.

1. Introduction

A collaborative virtual environment can be defined
as a single virtual reality space shared by multiple
participants connected from different hosts. Most
collaborative existing systems however restrict the
communication between the participants to text
messages or audio communication [1]. The natural
means of human communication are richer than this.
During collaborative training, for example, other
effects of coordinated visual and touch feedback play
also an important role and create a more realistic
experience to the users. More specifically, during
training sessions, the users are expected to perform
some tasks under the supervision of a trainer during
navigating and interacting realistically with the virtual

environment. In this case, realism not only includes
believable appearance and simulation of the virtual
world, but also implies the visual embodiment of the
users and the means of interaction with the world and
feeling various attributes of it using the senses.
Actually, collaborative virtual training is an area that
puts special demands on input [2] and so does on
output, when using force feedback devices.

We believe that collaborative virtual training using
force feedback devices may benefit from being able to
manipulate work models, feel the form and contact of
collision, weight, surface friction, texture, and softness
or hardness of objects remotely. Motivated by this, we
are particularly interested in the development of a
collaborative virtual training system in which users
using any type of force feedback device can not only
manipulate and explore a single virtual reality
environment, but can also make realistic touch contact
with it and with the other users and objects. To address
it, we present some related work in the area, and
generically describe force feedback devices with
emphasis on a commercial model used in our work, the
Microsoft SideWinder Force Feedback II [3] (section 2
and 3, respectively). Then, a collaborative architecture
for training is proposed, implemented and tested
(section 4). In particular, it provides device
independence and easy extensibility through a
compartmentalized and multi-layered design. In our
implementation, according to a communication
protocol over the network, a trainer (master) can
control a session attended by many trainees (slaves).
The trainees are expected to perform some tasks under
the trainer supervision, during navigating and
interacting via force feedback with the virtual reality
environment. A trainer can also temporarily hand the
control over to one of the trainees, either by the
trainer’s own initiative or upon request by the trainee.
As collaboration is achieved, there is no need for the
trainer and trainee to be present at the same location.

The prototype was evaluated using three force
feedback joysticks working collaboratively during two
training sessions (section 5). More specifically, one
session was carried out in playback mode while the
other one was realized in real-time, including
geometric collision effects. Finally, conclusions and
future directions for collaborative virtual training using
force feedback devices are given (section 6).

2. Related work

We are particularly interested in related work on
collaborative virtual environments and on using force
feedback devices for interacting with tri-dimensional
virtual spaces during training.

Most collaborative virtual reality systems consist of
basic components such as a virtual reality space stored
in a computer, a device or interface, a communication
protocol, and the user. These components are
integrated using multiple program layers. In particular,
there are some platforms and applications that have
been developed for robust distributed virtual worlds.
Examples are MASSIVE [10], EQUIP [11], DIVE
[12], OpenMASK [13], among others. MASSIVE has
support for data consistency, and world structuring. It
adopts a distributed database model, in which all
changes to items in the database are represented by
explicit events that are themselves visible to the system
[10]. It can also support a certain number of mutually
aware users using real-time audio. EQUIP is a
dynamically extensible open-source framework for
integrating C++/Java applications with a variety of
interfaces and devices, ranging from wireless portable
devices through to fully immersive and large systems
[11]. DIVE is a collaborative virtual environment
based on communication protocols that already
incorporate facilities for sharing states in a
heterogeneous network environment [12]. OpenMASK
is an open-source middleware for the development and

execution of modular applications in the fields of
animation, simulation, and virtual reality [13].
Collaboration between distant users within virtual
environments is possible with OpenMASK in which
several users can share simultaneous interactions with
the same interactive object.

A major problem with these generic and large
systems is that they are generally not open-source
(MASSIVE, DIVE), nor well documented (MASSIVE,
EQUIP, DIVE). Hence, they are difficult to be re-used
or extended to other scenarios. Recently, for portability
reasons, some developers have launched a Java version
of their code (EQUIP) which is still under testing.
Other systems, although reasonable documented, only
run under Linux/Unix operational system
(OpenMASK). Finally, most systems remain mainly
limited to sharing text-based data and audio, without
including force feedback effects.

Recent enhancements to virtual environments
allowing users to touch, feel and manipulate the
simulated objects using mechanical devices (haptic or
force feedback devices) that mediate communication
between them and the computer have been mainly
proposed in the Haptics area [2,4,5,6]. Force feedback
devices, beyond having the abilities of a standard input
device such as a mouse or an ordinary joystick, are
also output devices [7]. This characteristic enables
them to track a user’s physical manipulation (input)
and provide realistic touch sensations coordinated with
on-screen events (output). Each force feedback device
has its own strengths and weakness, just as each
application has its own unique demands. Devices
incorporating force feedback are all net force displays,
in that they mediate the virtual touch on an object by a
tool, the tools being the handle of an input-output
device [8]. A number of studies have shown that
adding haptic force feedback improves single users’
performance during training [14,15,16,17,18].

3. Force feedback devices

We classify the force feedback devices according to

the number of degrees of freedom (DOFs) that they
offer force feedback. The most common devices are
the joysticks that have two DOFs and the force
feedback applied to both. These DOFs enable the
joystick to restrict movements, exert forces or to apply
waveforms to simulate different conditions.
Professional systems often have three DOFs,
sometimes six, and force feedback in at least three of
them. These devices can simulate volumes, and not
only objects in the plane to which we are constrained
in the joystick. As a user manipulates the handle of a

Figure 1 The force feedback joystick used as the
input-output device. Photographed by one of the
authors.

force feedback device, encoder output is transmitted to
an interface controller at very high rates [5]. The
information is then processed to determine the position
of the end effector that is sent to the host computer
running a supporting software application. If the
supporting software determines that a reaction force is
required, the host computer sends feedback forces to
the device. Actuators (motors within the device) apply
these forces based on mathematical models that
simulate the desired sensations. For instance, when
simulating the feel of a rigid wall, the motors apply a
force that resists the penetration. The farther the user
penetrates the wall, the harder the motors push back, to
force the device back to the wall surface. The end
result is a sensation that feels like a physical encounter
with an obstacle.

The basic idea of a force feedback joystick is to
move the stick in conjunction with onscreen action.
The Microsoft Sidewinder Force Feedback II joystick
(see Fig. 1) used in this work is one of several force
feedback devices currently on the market. It is a low
cost device developed only in the early 00´s. It has a
USB port and an on-board 16-bit processor running at
25 MHz. This processor handles all the force effects.
There are three force effects that can be represented by
this input-output device [3]. First, there are time-based
effects such as jolts and vibrations. These are not really
related to the orientation of the joystick handle, but
instead depend on the temporal profile of the force.
Second, there are space-based effects like springs,
dampers, and walls. These present a changing force
depending on the orientation of the joystick handle and
how fast it is moving. Finally, there are invariant
effects, constant forces like wind or gravity. Beyond
these effects, the SideWinder Force Feedback II
joystick supports a number of effects that may be
combined to generate new ones. These effects vary
from simple raw forces in an arbitrary direction, to
complex force-waves in spatially located walls. The
co-processor takes care of all the control, decides if the
joystick is inside or outside the wall, and applies
corresponding forces. Up to four walls are supported
concurrently [9]. As with sensible movements, we can
consider many different properties including DOFs
supported, range, speed, accuracy and stability. We
can also consider how the physical form of the
application affords and constrains some basic
movements such as translate sideways (↑x), raise and
lower vertically (↑y), push and pull forwards and
backwards (↑z), tilt forwards and backwards (αx),
rotate on vertical axis (αy), and tilt sideways (αz).

A virtual environment contains information about
the magnitude and direction of forces to be applied to

the user, usually depending on the position and
velocity of a cursor in the environment. Every time the
user moves the handle of the joystick, the position of
the cursor changes, allowing for dynamic interactions
with the virtual reality environment. The information
about the position, as well as the force to be displayed,
usually has an update of at least 500Hz for smooth
haptic display [3]. A major issue occurring in this case,
is the update frequency of the computers which is
generally more than an order of magnitude lower than
the update frequency of the force feedback device [4].

The strength of the joystick force is called
magnitude and it varies according to a percentage
value. It is measured in units that run from zero
indicating no force, to 10,000 indicating the
maximum force for the device [3]. A negative
value indicates force in the opposite direction.
Magnitudes are linear, so a force of 6,000 is twice as
great as one of 3,000. All effects have a duration that is
measured in microseconds. Periodic effects have a
period, or the duration of one cycle, also measured in
microseconds. The phase of a periodic effect is the
point along the wave where playback begins. A ramp
force has beginning and ending magnitudes. The basic
magnitude of a periodic effect is the force at the peak
of the wave. Finally, a force can be constrained within
a set of range over time by using “envelopes”. They
are used to specify attack and fade values to modify
the beginning and ending magnitude of the effect.
These values have a duration which is used to define
the time that the magnitude takes to reach or fall away
from the sustain value.

In the next section we briefly describe the design
and the implementation details of the collaborative
virtual training prototype using force feedback devices
we have developed.

4. Components of the architecture

In our implementation, Java is the core technology
of our collaborative virtual training architecture as well
as the library for creating and manipulating tri-
dimensional geometry in a platform independent way
using Java3D, which is designed to provide support for
applications requiring higher levels of performance
and interaction [19]. The proposed architecture is
composed of four components, as shown in Fig. 2: a
Device Interface (that enables the Java Virtual
Machine, JVM, to access the force feedback device), a
Virtual Reality Environment (that also handles
collision detection and response), a Device Handler
(that is responsible for mapping the movements
performed by the user in the virtual environment and

network

force
feedback
device

Virtual
Reality

Environment

Device
Handler

Device
Interface

Collaboration

JVM

3D Application

OS

Figure 2 The compartmentalized and multi-layered
design of the collaborative virtual training architecture
using force feedback devices.

for mapping the feedback effects to the Java3D), and a
Collaboration layer (that consists of a communication
protocol responsible for data sharing and control).

There are some interesting Application
Programming Interfaces (APIs) for interacting with
force feedback devices [20,21,22]. One of the APIs
investigated as a possible choice for a component of
our collaborative training architecture was the
Immersion API [20]. Unfortunately, despite its
robustness, it is only available commercially. Other
APIs investigated were Linux APIs [21]. However,
few of them are available for interacting with force
feedback devices and even fewer are compatible with
the Microsoft SideWinder Force Feedback II joystick
model. Further, these Linux APIs are unluckily ill-
documented. Finally, a well-documented API that
particularly allows Windows based systems to run and
display rich applications in multimedia elements is the
DirectX [22]. Aware of the main limitations of these
APIs, the DirectX (version 9.0) was the one chosen to
interface to the SideWinder Force Feedback II joystick
(see the Device Interface component in Fig. 2). In our
application, the DirectX API provides force feedback
support specifically using the DirectInput interface
[23]. Generally, custom device drivers for every input
device involve native code. In particular, under Win32
it is necessary to implement a layer to the DirectInput
API to allow the use of a device. In Fig. 2, the Java
Native Interface (JNI) is used to interface to the
Device Interface component (written in C++) that in
turn calls DirectX methods.

Advanced input-output devices require advanced
programming. The difficult issue is how to implement
a program capable of setting up and handling an input-
output device. Further, there are a large number of
parameters that need to be set correctly. Most
importantly, there are two main code segments
required to develop a force feedback graphical
application: the routine(s) to create force feedback
effects and the routine(s) to play them back either from
code control or triggered by a user hardware event
(e.g., when the user presses a joystick button).

Usually, an input-output device consists of the
lowest level interface with the data source. In the
Device Handler component of Fig. 2, a specific
element can be represented by a sensor on the force
feedback device. More specifically, a device processes
the raw input and fills in the sensor information. In
particular, an input device can provide information to
the sensors in one of three fashions: blocking, non
blocking, and demand driven [24]. We have
particularly chosen the demand driven implementation.
It guarantees that data is always available but is only
presented to the runtime environment when it is
specifically requested by the application. Comparing to
the other mentioned approaches, the demand driven
implementation causes the least load on a runtime
environment.

Our designed architecture supports an input-output
device that takes the input from the joystick hardware
and supplies information on demand to the runtime
environment. With DirectInput, the force feedback
device can react to an application in which the user
defines effects such as jolts, vibration, or resistance
when an object collides with an obstacle, or a button or
trigger is squeezed. In DirectInput terms, a particular
instance of movement or resistance over a period of
time is called an effect. DirectInput defines a number
of standard categories of effects, called forces. Some
of these forces are described as: constant force (a
steady force exerted in a single direction), ramp force
(a force which increases or decreases in magnitude),
periodic effect (a force that pulsates according to a
defined wave pattern), and saw-tooth-up/saw-tooth-
down (a waveform which drops/rises vertically after
reaching a maximum positive/negative force) [3,23].

The Collaboration component (see Fig. 2) is
responsible for all exchanges of information among
users. It consists of a communication protocol over the
network (see Fig. 3), the directory server that
corresponds to an entity (master) that holds
information about all participants in a training session,
and the communication controller.

The native platform communication library is
loaded into the Java environment using the JNI
through the Device Interface component. Users´
actions are sent to all participants of a collaborative
session through the communication protocol module.
We have specified in our implementation two types of
information passed between the application and the
force server (master). In particular, commands
affecting system state (starting, initiating local force
and force feedback computation) should be delivered
intact and not lost. By contrast, position reports and

updates to intermediate representation parameters are
sent frequently, so a lost packet can be ignored since a
new one will arrive shortly. Currently, we use two
channels between the client and master, i.e., the
command and data channels. More specifically, a TCP
stream connection for the command channel (reliable,
high overhead) and UDP datagrams (unreliable, low
overhead) for the data channel, as shown in (a), (b),
(c) and (d) of Fig. 3. In (a), the trainer creates a
session and accepts the entrance of a number of
trainees (clients). The trainee may request the training
control to the trainer, as displayed in window (b). The
trainer may accept this request or not. In (c), the
trainer can take the control back from a trainee at any
time. The trainer can also temporarily hand the control
over to one of the trainees by the trainer´s own
initiative, as displayed in window (d). Our system
prototype provides an asynchronous continuous
report, in which the master sends position reports at
regular intervals, using the data channel, rather than
upon request. As discussed by Mark [25], this mode
avoids the wait for a round-trip network message,
usually required by standard requests. The application
can poll these continuous reports or block them. In
particular, we currently use only one channel for UDP
datagrams (for the force feedback and joystick
positioning updates). However, the architecture
proposed in this work can be easily extended to
support several UDP channels, for instance, for
collaborative audio transmission as well. In our
implementation, the actions and feedback interactions
among users are communicated to other participants to
have the impression of being involved in a training
exercise. The status of the training exercise is
transmitted into the Collaboration layer, as shown in
Fig. 2. The trainer has the role of the master (see Fig.
3). The other participants get this status at the
beginning of their sessions and initialize the training
scenario with these settings. For example, to explore
the virtual reality environment (a maze we have
generated automatically using Java3D), the master can
use the handle of the joystick to change his positioning
(through rotations and translations) and interact with
the environment through force feedback. The
orientation of all the other participants in their
respective scenarios is set into the system in real time
and so is the feedback. Using our prototype system,
we are also able to record a training session for later
playback through a synchronization layer.

During our collaborative virtual training, collision
effects between users and maze walls need to be
detected and taken into account through touching or
interpenetrating interactions (see the Virtual Reality
Environment component of Fig. 2). Besides being

Figure 3 The communication protocol over the
network using a TCP stream connection for the
command channel (dashed lines) and UDP datagrams
for the data channel (solid lines). In (a), the trainer
creates a session and accepts the entrance of a
number of trainees (clients). The trainee may request
the training control to the trainer, as displayed in (b).
The trainer may accept this request or not. In (c), the
trainer can take the control back from a trainee at any
time. The trainer can also temporarily hand the control
over to one of the trainees by the trainer’s own
initiative, as shown in (d).

Trainer Trainee

session starting

data sending

control request
acceptance

control recovery

control handling

acceptance

connection request
acceptance

data sending

data sending

data sending

(a)

(b)

(c)

(d)

detected, and contact area determined, collisions have
to be handled for collision response that induces
instantaneous change in the state of components
through direct correction of position and speed. These
interaction forces need to be calculated at high rates to
satisfy the control requirements of haptic interface
hardware [16]. We have implemented a traditional
approach in order to simplify computational costs
involved during contact. First, we use a bounding
sphere algorithm to determine whether a point is near
to a surface maze wall. Then, we calculate the exact
collision detection point. In particular, the different
sensors on the joystick are used to detect the distance
to the closest maze wall in the direction of motion. If
any sensor detects an object closer than d (a pre-
defined critical distance), the motion is stopped.
Otherwise, d is used to calculate the velocity to be set
which represents the force response of the system to
the collision.

Standard sensors are used to drive the user´s view
position in our implementation. In particular, Java3D
has a set of standard sensor inputs that may be used to
automate some of the control during a collaborative
training session. Basically, it is used to provide a
socket to place any given sensor and allow it to control
the interactions with the scene graph. Our prototype
uses a standard sensor that is usually the most
interesting because it allows to use head move along
type systems to automatically track where the user is
looking. Wherever the joystick moves and orientates,
the viewpoint is moved with it. There are various ways
to react to sensor input. As our application is using a
force feedback joystick it may be desirable to read
sensor data every single frame and react to it. Other

times, it may be more convenient to the application to
react to sensor input by creating behaviours that only
launch when the sensor enters a particular bounding
region. In our prototype, the former type of reaction
happens during the whole training session, while the
latter happens every time that a geometric obstacle is
found. In either case, the system requires the use of
behaviours to prepare the application code to read
information from the sensors and react to it by
applying this information to the scene graph as well as
to the feedback response of the joystick.

All user interactions with the graphical application
layer are performed using the joystick and its buttons.
All the feedback is done by the haptic device, which
can be made to move and react to events. The user is
free to explore the structure as he can feel the walls
being simulated by force feedback in the joystick.
When an exit is found, this is indicated by an
oscillation. All the structures are simulated in the bi-
dimensional plane that the joystick handle moves in.
The absolute position within the movement range of
the handle is used as the desired position in the virtual
structure. We have mapped three DOFs of the joystick
(with force feedback applied to two of them) in a very
intuitive way that mimics a flight control system. The
throttle button (with one DOF for translations) and the
handle of the joystick (with two DOFs for rotations),
as shown in Fig. 1, were mapped to perform roll and
pitch movements, respectively. More specifically, the
handle of the joystick is used to map movements such
as tilt forwards and backwards (αx) as well as
sideways (αz), and the throttle button is used to map
movements such as push and pull forwards and
backwards (↑z). In our implementation, the velocity is

Figure 4. Three participants (one trainer and two trainees) during a collaborative virtual training using the
SideWinder Force Feedback II joysticks. The trainer is using the handle of the joystick as a flight simulator
controller to navigate on and feel through force feedback a virtual maze. When the trainer finds obstacles with
the maze walls, the collision effects felt by the master are transmitted collaboratively to the trainees through
force feedback. Photographed by one of the authors.

a parameter that can be also controlled and modified
by the throttle button. It is measured in units that run
from zero indicating no velocity, to 65,000 indicating
the maximum velocity for the joystick [3]. Similarly to
the force magnitude, the velocity varies according to a
percentage value. The frame of reference for the
movement analysis during the collaborative virtual
training is that of the device itself. All these mappings
are implemented in the Device Handler component
(see Fig. 2).

5. Collaborative virtual training

Collaborative virtual training can be used to
construct a virtual world where users can share the
environment in which they preside as well as to
enhance the way they “feel” the data or objects when
performing training exercises.

In our implementation, we designed a collaborative
system that allows users to navigate a maze, with their
respective joysticks providing feedback. In the
graphical scenario, routes are determined following a
specific trajectory chosen by the master user. Using the
force feedback joysticks and the sense of touch, users
are able to feel the effects of phenomena (such as
viscous damping, stiffness, and inertia) at the same
time the master is feeling these effects. Indeed, feeling
the dynamics improves user’s understanding and adds
an element of a great interest to the training exercise.

Our collaborative training session can also be
performed through pre-recorded spaces. During the
playback, the frame rate is kept at constant rates. A
trainer (the master) has control over frame rate through
the force feedback joystick. In addition to speed
control, as the trainer takes the handle of the joystick
and moves it from side to side, the position of the
handle is sensed by all the other users. Based upon the
position and velocity of the handle, various amounts of
force are reflected back to the users.

A realistic demonstration is built with three
participants handling their respective force feedback
joysticks simultaneously, as shown in Fig. 4: one
trainer (master) and two trainees (slaves). Basically,
the training goal is to navigate on and feel through
force feedback a virtual reality maze. During the
training session, collision effects between users and
maze walls are taken into account, making the
collaborative virtual training appears as real as
possible. The haptic properties modelled are texture,
size, weight and stiffness. To begin the task, the
master guides the participants to explore the
collaborative scenario. The users can feel the surface

of objects/walls in the common environment in a
collaborative fashion using the force feedback joystick.

6. Conclusion

A collaborative architecture for the control of force
feedback devices has been proposed and tested in a
virtual training scenario. In particular, it provides
device independence and easy extensibility through a
compartmentalized and multi-layered design. Force
feedback adds a lot of value to any graphical
application and is certainly worth the effort to
implement it. The combined effects of coordinated
visual, and touch feedback create a realistic
experience.

We believe that collaborative training will be a
valuable concept for both the developers of haptic
devices and the end-users of such devices. In our
training scenario, the low cost commercial force
feedback joysticks serve as haptic interfaces and
provide the users with real-time feeling of the virtual
reality environment interactions. In spite of this,
collision detection is often the bottleneck of simulation
applications in terms of calculation time, directly
related to the scene complexity. In particular, it is a
critical point for virtual environment applications
where real-time performance is required. The higher
the complexity of the computer graphics in a scene, the
lower is the perceived force feedback response of the
joystick.

Performance and subjective measures are currently
being carried out to quantify the scalability and the
role of force feedback in our prototype system. The
preliminary results show that the force feedback
joystick model used intuitively indicates the user the
applied force during training sessions. However, there
are important joystick hardware limitations mostly due
to limited maximum force capability. As joysticks
continue to evolve, it is expected that manufacturers
will take force feedback technology to whole new
levels. Indeed, force feedback controller technology
may lead to significant changes in industrial
machinery, games and medical care. The benefits and
the number of possible collaborative applications using
haptic devices are endless. For instance, surgical
simulations and medical training, development of
virtual reality environments for people with special
needs (e.g., to assist blind people), and virtual art
exhibitions, are some of the areas where feedback
devices are making an appearance. In the short term,
our hope is to develop a generic and robust
collaborative virtual environment using haptic devices
for training. Libraries of objects can be then created

and used to provide the component parts for a variety
of virtual environments that may be shared, simulated,
felt, analyzed and visualized by the virtual world of
trainee and instructor using force feedback devices
ubiquitous as computer keyboards are today.

References

[1] C. Joslin, I.S. Pandzic and N.M. Thalmann, “Trends in

Networked Collaborative Virtual Environments”,
Computer Communication Journal, Vol. 26, No. 5, pp.
430-437, 2003.

[2] R. Baecker, J. Grudin, W. Buxton and S. Greenberg,
“Touch, Gesture & Marking”, Human-Computer
Interaction: Toward the Year 2000, pp. 469-482, 1995.

[3] The Microsoft SideWinder Force Feedback II joystick.
Available at http://www.microsoft.com/
hardware/sidewinder/Joysticks.asp. Last visited on 12th
May 2004.

[4] L. Fluckiger and L. Nguyen, “A Generic Force-Server
for Haptic Devices”, SPIE Telemanipulator and
Telepresence Technologies VII, Boston, 2000.

[5] J.J. Berkley, “Haptic Devices”, White Paper by Mimic
Technologies Inc., pp. 1-4, May 2003.

[6] E-L. Sallnas and S. Zhai, “Collaboration Meets Fitts’
Law: Passing Virtual Objects With and Without Haptic
Force Feedback”, In Proc. of INTERACT 2003, IFIP
Conference on HCI, pp. 97-104, 2003.

[7] P.J.Kovach,“Inside Direct3D”, Microsoft Press, 2000.
[8] A. J. Johansson and J. Linde, “Using Simple Force

Feedback Mechanisms as Haptic Visualization Tools”,
16th IEEE Instrumentation and Measurement
Technology Conference, Venice, Italy, 1999.

[9] B. Bargen, P. Donelly. “Inside DirectX”, Microsoft
Press, 1998, ISBN 1-57231-696-9.

[10] C. Greenhalgh and S. Benford, “MASSIVE: A
Collaborative Virtual Environment for
Teleconferencing”, ACM Transactions on Computer-
Human Interaction, Vol. 2, No. 3, pp. 239-261, ACM
Press Publisher, New York, USA, September 1995.

[11] C. Greenhalgh, S. Izadi, T. Rodden, and S. Benford,
“The EQUIP Platform: Bringing Together Physical and
Virtual Worlds”, Technical Report, 2001. Available at
http://machen.mrl.nott.ac.uk/home.html. Last visited on
12th May 2004.

[12] C. Carlsson and O. Hagsand, “DIVE - A Platform for
Multi-User Virtual Environments’’. Computers &
Graphics Vol. 17, No. 6, pp. 663-669, 1993.

[13] D. Margery, B. Arnaldi, A. Chauffaut, S. Donikian and
T. Duval. “OpenMASK: Multi-Threaded Animation and
Simulation Kernel: a General Introduction”, VRIC 2002
Proceedings, 2002.

[14] C. Basdogan, C. Ho, M.A. Srinivasan, and M. Slater,
“An Experimental Study on the Role of Touch in Shared
Virtual Enviroments”, ACM Transactions on Computer-
Human Interaction, Vol. 7, No. 4, pp. 443-460, 2000.

[15] Microsoft DirectX-DirectInput MSDN documentation.
Available at http://msdn.microsoft.com/. Last visited on
12th May 2004.

[16] G.C. Burdea, “Haptic Feedback for Virtual Reality”, In
Proc. of the Virtual Reality and Prototype Workshop,
Laval, France, pp. 87-96, June 1999.

[17] F. Vahora, B. Temkin, T.M. Krummel, and P.J.
Gorman, “Development o Real-Time Virtual Reality
Haptic Applications: Real-Time Issues”, In Proc. of the
12th IEEE Symposium on Computer-Based Medical
Systems, IEEE Ed., pp. 290-295, 1999.

[18] G. Burdea, “Force and Touch Feedback for Virtual
Reality”, John Wiley & Sons, New York, USA, 1996.

[19] G. Rowe, “Computer Graphics With Java, Palgrave
Macmillan, 2001.

[20] Immersion TouchSense Technology. Available at
http://www.immersion.com. Last visited on 11th May
2004.

[21] F. Brachere, Microsoft Force Feedback 2 Driver for
Linux Project. Available at http://madfab.free.
fr/ff/. Last visited on 11th May 2004.

[22] Microsoft DirectX API. Available at
http://msdn.microsoft.com/archive/enus/directx9_c/direc
tx/input/using/forcefeedback/. Last visited on 9th May
2004.

[23] Microsoft DirectInput Force Feedback MSDN
Documentation. Available at http://msdn.
microsoft.com/archive/enus/directx9_c/directx/input/usi
ng/forcefeedback/effecttypes.asp. Last visited on 12th
May 2004.

[24] J. Couch, “Input Devices”. Available at
http://www.j3d.org/tutorials/raw_j3d/chapter9/input_dev
ices.html. Last visited on 13 th, May 2004.

[25] W.R. Mark, S.C. Randolph, M. Finch, J.M.Verth, and
R.M. Taylor II, “Adding Force Feedback to Graphics
Systems: Issues and Solutions”, In Computer Graphics
Proceedings, New Orleans, Louisiana, pp. 447-452,
ACM SIGGRAPH, August 1996.

