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Abstract

We describe a data-driven motion simulation algorithm
based on an affine image-matching equation. Solving such
equation via the Green’s function approach, we have
obtained a pair of filters which, when applied over an
input image, allow the generation of virtual sequences that
convey a compelling motion impression. Complex rigid and
nonrigid motions have been simulated this way, such as
those of a pulsating heart, a twig in the wind and a levitating
ball.

1. Introduction

Data-driven motion simulation is a relatively unexplored
subject in computer graphics, since most of the motion
simulation algorithms found in the literature are model-
based ones [1]-[2]. A fully data-driven approach is that of
Freeman et al., who use steerable filters [3] to create their
‘motion without movement’ illusion [4]. An alternative,
which is exploited here, is to consider solutions of matching
(irradiance-conservation) equations of the form

I2(x+ u,y+ v) = I1(x,y), (1)

where I1 is the input image, (u,v) is the optical flow field,
and I2 is a matching image, to be found, which, along with
I1, will convey the motion information.

Expanding the left-hand side in a Taylor series up to
second order in u and v, and performing a suitable change
of variables, it is easy to see that equation (1), for matching
along a general direction θ, reduces to the one-dimensional

form [5]

u2

2
I2
′′ + uI2

′ + I2 = I1, (2)

where Ii = Ii(x,y+γx), for γ= tanθ, and where the primes
denote differentiation with respect to x.

Solutions to equation (2), for uniform u, have already
been considered in [5], in the context of 3D shape
estimation. These can be obtained as the convolution of
I1 with a linear, shift-invariant filter which is the Green’s
function to equation (2) - that is to say, it is the solution to
that equation when the unit impulse δ(x− x0) is substituted
for its right-hand side. This has the form

Gu(x− x0) =
2
u

sin

(
x− x0

u

)
e
−

(
x−x0

u

)
, (3)

for x > x0, with Gu = 0, otherwise. When convolved with a
shading image, Gu is able to simulate its photometric stereo
pair - i.e., a rendition of the same scene under displaced
illumination [5].

The Green’s function of matching equation (2) has
thus already been shown to allow the purely data-driven
simulation of a certain kind of 3D movement - namely, that
of the irradiance pattern over a static scene, arising from an
illumination change. Here we present a way of extending
such approach, aiming at the simulation of a broader class
of movements. This we do by considering a less restrictive
model for our optical flow: instead of the uniform field,
u = constant, which led to (3), we introduce the affine
model u+u′x, where both u and u′ are uniform. Considering
the solution to the matching equation under such model,
we obtain a Green’s function filter which, when applied
to a given input, is able to generate image sequences that
simulate various kinds of uniform and nonuniform motions.



The remainder of this paper is organized as follows:
in Section 2, we derive our new Green’s function filter,
and consider its practical implementation; in Section 3, we
present and discuss some experimental results; finally, in
Section 4, we make our concluding remarks and propose
directions for future work.

2. Affine Matching through Green’s Function

Let us go back to the matching equation (2), now
considered under an affine optical flow model, viz.,

(u+ u′x)2

2
I2
′′ +(u+ u′x)I2

′ + I2 = I1, (4)

where it should be kept in mind that both u and u ′ are
assumed as constants, representing, respectively, the optical
flow and its spatial rate of change. Similarly as in (2), I1

and I2 are taken as functions of (x,y + γx), in order to
accomodate matching along a general direction θ = tan−1 γ.

Equation (4) has the Cauchy-Euler form [6], and its
solution, over a domain D, can be expressed as

I2(x,y+γx) =
Z

D
G(x,x0)I1(x0,y+γx0)dx0, (5)

where G(x,x0) is the Green’s function, which solves

(u+ u′x)2

2
G′′ +(u+ u′x)G′ + G = δ(x− x0), (6)

given the same boundary conditions as assumed for I2.
Under the sole condition that G(x,x0) remains finite as x

goes to infinity, a solution to (6) can be found as

G(x,x0) =
2

u′2β(x0 + a)
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(7)
for x > x0, with G(x,x0) = 0, otherwise. The parameters a,α
and β are given as


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a = u
u′
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(8)

leading to a bounded G(x,x0) for D ⊂ (−a,∞), as long as
we take 0 < u′ < 2. In finite domains, this solution is valid
for 2−2

√
2 < u′ < 2+ 2

√
2.

It should be mentioned that, taking a similar form to
(7), but with a cosine substituted for the sine term there,
we would obtain a second filter - let us call it H(x,x0)
- which, when applied over I1, leads to a solution of the
homogeneous equation associated with (4). Therefore, a
general matching pair can be obtained by filtering the input
image through a linear combination of G and H, which are

the imaginary and real parts, respectively, of the complex
function

2

u′2β(x0 + a)

[
x+ a
x0 + a

]α+iβ
, (9)

for x > x0. Plots of both filters appear in Figure 1.

(a) Filter G with u = 0.1 and u′ = 0.002.

(b) Filter H with u = 0.1 and u′ = 0.002.

Figure 1. Filters were plotted as functions of x,
with x0 = 0.

2.1. Implementation Issues

The practical implementation of the Green’s function
filtering process deserves some discussion. We wish to
perform an integration such as (5), and thus, given a certain
γ = tanθ, we must traverse the input image, computing
weighted sums of the pixel intensities along the direction
θ, where the weights will be the G or H values.

There are a couple of ways of achieving this. We
could, for instance, use a Bresenham-like incremental line
algorithm [7]. Alternatively, we could rotate the image by



an angle −θ, and filter it horizontallly, which is easily done;
afterwards, we would revert to the original orientation,
through a rotation by θ.

The solution we chose was to visit each image
pixel, (x,y), in a raster sequence, and look for the
line which crosses that pixel in the required direction.
We then performed the summation of products such as
G(x,x0)I1(x0,y0), for all those pixels, (x0,y0), lying on that
line and preceding the visited site (Fig. 2). The unavoidable
aliasing problem, which arises due to the dicretization
of the image domain (see Fig. 3), has been dealt with
through bilinear and linear interpolation of, respectively,
the input image and the Green’s function. Algorithm 1,
below, describes the whole process (the symbol ∗ stands for
the filtering operation defined by (5)). Notice that, instead
of trying to locate the actual pixels along the scan line,
we uniformly sample points along that line, using a unit
sample interval, and compute their intensities using bilinear
interpolation.

Figure 2. For computing I2(x,y), we sum the
contributions G(x,x0)I1(x0,y0) from all those sites
which precede (x,y) on the scan line of the
required direction.

3. Experimental Results

Animated motion sequences illustrating the application
of our approach can be found at the web site
http://www.impa.br/˜perfeuge/green/green.html. Here we
briefly discuss some general features of such experiments.

Given a single input image, its companions in each
artificial motion sequence have been generated as described
in Section 2 above, with u, u ′, and θ chosen in such a way as
to simulate the desired effects. The parameter θ was always
picked in the (−90◦,90◦) range, that allows us to simulate
motions from left to right. Other motions can be created
by applying the same algorithms to mirrored or rotated
versions of the input image. Motion sequences result more
compelling when the values of u and u ′ are small, since

Figure 3. Illustration of aliasing control. The input
image was filtered by G, with parameters values
u = 0.03, u′ = 0.01 and θ = 11◦. The top inset
is a zoom of the indicated area, showing the
resulting aliasing effect. The bottom one shows
its correction through linear interpolation of the
Green’s function and bilinear interpolation of the
input image.

Algorithm 1 Green’s function motion simulation

Input: Original Image I1, Optical Flow u, Spatial Rate of
Change u′ and the angle θ
Output: I2 = I1 ∗G

for each image pixel (x,y) do
xOLD = x;
yOLD = y;
sum = 0.0;
while (xOLD,yOLD) doesn’t leave the image do

xOLD = xOLD − cos(θ);
yOLD = yOLD − sin(θ);
G(x,xOLD) = LinearInterpolate(u,u′);
pixel = BilinearInterpolate(I1(xOLD,yOLD));
sum = sum+ G(x,xOLD) · pixel;

end while
I2(x,y) = sum;

end for



Figure 4. Illustration of blur control. The input image,
on the top, was filtered by the combination c1G + c2H,
with parameters u = −0.031, u′ = −0.001, and θ = 0◦.
The middle image resulted for c1 = 1.0 and c2 = 0.0. The
image on the bottom resulted for c1 = 0.1 and c2 = 5.0.

the loss of high frequency information is less severe in that
case. There is always a certain amount of blur, but it can
be controlled by using linear combinations of the G and
H filters, as illustrated in Figure 4. This happens because
the filtering by H is a homogeneous solution for the affine
matching equation. As a consequence, the intensities of
pixels at locations x near to x0 tend to be preserved, since H
peaks at that point and the blurring effect of G is attenuated.

Unless stated otherwise, we will assume that the filtering
direction is horizontal (θ = 0◦), for simplicity. For the
computation of G(x,x0), we will map the leftmost point in
each image row to −0.5 and the rightmost point to 0.5 (thus,
the midpoint in each row is mapped to zero).

Next, we will show how to choose the parameters in
Equation 4 in order to be able to simulate different classes
of movement. We begin by rewriting that equation as

U2

2
I2
′′ +UI2

′ + I2 = I1, (10)

where U = u + u′x, u is the effective disparity or optical
flow, and u′ is the noneffective disparity or spatial rate of
change of u.

The case u′ = 0 has appeared in [5] and, in that case,

Equation 10 reduces to Equation 2. The corresponding
Green’s function is that given in the Equation 3. As a
result of the filterings, one obtains a nonuniform rotation.
A translation component can be observed as well. The
impression of rotation occurs when an increasing sequence
of values of u is given, e.g. u = 0.01, 0.02, ..., 0.08. Figure
5 illustrates that behavior. The flow field is uniform, and the
object is in the center of the image. Actually, a convincing
rotation impression is achieved only if the object is tilted.
The blurring effect on the right-side edge of the object
boundary plays an important role for this effect.

(a) (b)

Figure 5. (a) Illustration of the behavior of U when
u′ = 0. (b) Motion Simulation. From top to bottom: input
image and Gu-filtered sequence for parameter values
u = 0.03 and 0.05, with θ = 0◦.

The general affine matching model (with u ′ not
necessarily equal to zero) allows us to represent much more
varied and complex motions. The affine motion model can
be expressed by a first order approximation of the optical
flow (U,V )T as[

U
V

]
=

[
u0

v0

]
+

[
D+ S1

R+ S2

S2 −R
D−S1

]
.

[
x
y

]
, (11)

where (x,y)T are the pixel coordinates in the image,
(u0,v0)T are the uniform, zero-order components of
the flow, D is a dilation(contraction or expansion)
component, R is the rotation component, and S 1 and S2

are shear components [9]-[10]. As we are concerned with



U = u+ u′x, it will be assumed that S2 −R = 0, u = u0 and
u′ = D+ S1(u′ �= 0). By observing the results, when is kept
u constant and u′ → 0, the filtering effects of G converge
to the effects of Gu. This can also be proved analytically.
In this case, there is no dilation and shear components, i.e.
D + S1 → 0. After comparing the sequences created by
u′ �= 0 and u′ = 0, we have noted that certain sequences of
u′ �= 0 convey a better impression of movement. Below we
discuss how to generate especific motion simulations, using
the G−filters.

Translation: can be obtained in two different ways: (a) by
a sequence of increasing positive values for u and u ′; or (b)
by a sequence of decreasing negative values for u and u ′; or
(c) by sequences where u varies and u ′ remains constant.

Let us consider the following example of strategy (a):
(u,u′) = (0.01,0.001), (0.02,0.002), (0.03,0.003), ...,
(0.07,0.007). As in the case of the graph in Figure 1(a),
one observes that, in each case, G, starting at x0, first
increases, then decreases. As u and u′ increase, the rise and
fall of G become slower and a larger number of samples
x have a nonzero contribution G(x,x0), causing more blur
in the last frames. Figure 6 illustrates the behavior of U in
this case. The values U at the rightmost points of the image
is larger than those at the leftmost points. Furthermore, as
u and u′ increase, all points of the image become more
displaced towards the right.

(a) (b)

Figure 6. (a) Illustration of the behavior of U . (b)
Translation simulation. From top to bottom: input image
and G-filtered sequence for parameter values (u,u′) =
(0.03,0.003), and (0.07,0.007), with θ = 0◦.

Strategy (b) is similar to (a). As an example of strategy (c)
let us consider: (u,u′) = (−0.040,0.001), (−0.038,0.001),
(−0.036,0.001), ..., (−0.008,0.001). As u increases,
the number of samples x that has a nonzero contribution
G(x,x0) does not change, but the amount of blur decreases.
Figure 7 illustrates the behavior of U in this case. As ‖U‖

always increases, the points of the image are less displaced
to right in each succesive frame.

(a) (b)

Figure 7. (a) Illustration of behavior of U . (b)
Translation simulation. From up to down: input image
and G-filtered sequence for parameter values (u,u′) =
(−0.040,0.001), and (−0.020,0.001), with θ = 0◦.

Rotation: can be obtained by keeping u fixed, while
varying u′. Let us consider the following example of this
strategy: (u,u′) = (−0.04,−0.04), ..., (−0.04,−0.01),
(−0.04,−0.009), (−0.04,−0.005), (−0.04,−0.001),
(−0.04,0.001), (−0.04,0.005), (−0.04,0.009),
(−0.04,0.01), ..., (−0.04,0.05). When u ′ is negative,
‖U‖ increases. As a consequence, the rightmost points
in each image row are more displaced to right than the
leftmost points. This gives an impression of expansion.
When u′ is positive, ‖U‖ decreases. As a consequence,
the rightmost points in each image row are less displaced
to right than the leftmost points, causing an impression of
contraction. Figure 8 illustrates the behavior of U in this
case.
Pulsating Heart: can be obtained through the following
sequence of triples: (u,u′,θ) = (0.04,0.001,0◦),
(0.04,0.001,5◦), and (−0.02,0.001,0◦). In this case
U is always increasing. Hence the rightmost points in each
image row are more displaced to the right than the leftmost
points. Notice that U is positive for the two first frames and
negative in the last frame. An impression of expansion is
achieved with the two first frames, and an impression of
contraction is provided by the last frame. In the transition
from the second to the third frame two things occur : (1)
the values of ‖U‖ at the rightmost points of the third image
are smaller than those at the corresponding points in the
second frame; and (2) the values of ‖U‖ at the leftmost
points of the third image are greater than those in the
corresponding points in the second frame. This explains
the impression of contraction obtained. The perception of
movement for the blood vessels is due to the transitions



(a) (b)

Figure 8. (a) Illustration of the behavior of U .
(b) Rotation Simulation. From top to bottom:
input image and G-filtered sequence for parameter
values (u,u′) = (−0.04,0.05), and (−0.04,−0.04),
with θ = 0◦.

from the first to second frame and from the second to third
frame. Second frame only provides a translation motion.
Figure 9 illustrates the behavior of U in this case.
Flower under the effect of the wind: can be
obtained through the following sequence of triples:
(u,u′,θ) = (0.04,0.004,12◦), (0.03,0.003,9◦),
(0.02,0.002,6◦), (0.01,0.001,3◦), (−0.01,0.001,−3◦),
and (−0.02,0.002,−6◦). Large values of u and u ′ provide a
perception of movement of wild wind acting on the flower.
The idea is that the human eye can not perceive the high
frequency informations on the flower under the effect of
wild wind. Compelling simulation is achieved because the
values of the triple (u,u′,θ) decay.
Levitating ball: values of u and u ′ were fixed at 0.03 and
0.01, respectively. This effect is simpler to obtain, requiring
only to vary the θ angle. To generate the example image in
our web site we used θ∈ (−45◦,45◦).
Earthquake: values of u and u′ were fixed at 0.02 and
0.002, respectively. The sequence was generated with nine
frames. The first six frames were obtained with θ = 0, 20,
−20, 0, 17, and −17◦. After that, u and u′ were fixed at 0.01
and 0.001, respectively, and the θ values set to 0, 14, and
−14◦. The blurring in the first images and their oscilation
gives us an impression that an imaginary camcorder was
recording the earthquake. The smaller amount of blur in the

(a) (b)

Figure 9. (a) Illustration of the behavior of U . (b)
Pulsating Heart. From top to bottom: input image
and G-filtered sequence for parameter values
(u,u′) = (0.04,0.001), and (−0.02,0.001), with θ =
0◦.

last images give us an impression of decelerating tremor.
In summary, by a proper combination of parameters, we
have been able to achieve plausible simulations of both
rigid and nonrigid motions, as illustrated above.

4. Concluding Remarks

We have presented a data-driven motion simulation
approach based on the Green’s function solution of an affine
matching equation. By filtering an input image through
our matching kernels, we have been able to generate
virtual image sequences which induce a compelling motion
perception. Animations produced this way have been shown
to simulate both rigid and nonrigid motions, such as those
of a pulsating heart, a levitating ball or a flower in the wind.

As an extension of the present work, a possibility which
can be exploited is to apply our Green’s function filters
with different tuning parameters for different regions of the
input image, in order to create cartoon-like animations. The
generation of virtual stereoscopic pairs is also envisioned.
On a different line, we also intend to test our approach
against that of Freeman et al. [4], and to compare our
simulations with motions generated by transformations of
geometric models.

As a final remark, we should mention that Green’s
functions of alternative forms of affine matching equations
have been considered elsewhere [8], in the context of
computer vision 3D shape estimation.
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