
Navier-Stokes on Programmable Graphics Hardware using SMAC

Carlos Eduardo Scheidegger
Instituto de Inforḿatica

UFRGS
carlossch@inf.ufrgs.br

Jõao Luiz Dihl Comba
Instituto de Inforḿatica

UFRGS
comba@inf.ufrgs.br

Rudnei Dias da Cunha
Instituto de Mateḿatica

UFRGS
rcunha@mat.ufrgs.br

Abstract

Modern programmable graphics hardware offers suffi-
cient computing power to suggest the implementation of tra-
ditional algorithms on the graphics processor. This paper
describes a complete implementation of a standard tech-
nique to solve the incompressible Navier-Stokes fluid equa-
tions running entirely on the GPU: the SMAC (Simpli-
fied Marker And Cell) method. This method is widely used
in engineering applications. The described implementation
works with general rectangular domains, with or without
obstacles, and with a variety of boundary conditions. Fur-
thermore, we show that our implementation is about six-
teen times faster than a reference CPU implementation run-
ning on similar cost hardware. Finally, we discuss simple
extensions to the method to deal with more general situ-
ations, such as free boundary-value problems and three-
dimensional domains.

1. Introduction

Harnessing the modern programmable graphics hard-
ware processing power for general computation is a very ac-
tive area of research [1] [4] [6]. Although this is not a new
idea [9] [12], it was only recently that the graphics hardware
used in consumer-level personal computers reached inter-
esting levels, both in terms of raw performance and pro-
grammability.

Nowadays, modern Graphics Processing Units (GPUs)
have a full 32-bit floating-point pipeline, with pro-
grammable vertex and fragment shading units. This al-
lows us to interpret the GPU as astream processor[13]
[3], where streams are defined as sets of independent uni-
form data. This is the main advantage that a GPU has over
a CPU: since computation on pieces of the stream are in-
dependent from each other, it is possible to use multiple
functional units to process the data efficiently, in paral-
lel.

Figure 1. A 1024 × 128 Navier-Stokes simula-
tion running at interactive rates, Re = 10000.

Of course, not every problem decomposes itself grace-
fully in independent pieces: one must find a way to adapt the
algorithm to the restrictions that the GPU imposes. A GPU
algorithm is a carefully constructed sequence of graphics
API calls, with textures serving as storage for arrays and
data structures, and vertex and fragment programs perform-
ing the computation. In this work, we use NVIDIA’s NV35
and NV40 architectures. An implementation of this kind re-
quires a thorough understanding of the interplay between
the different parts of the graphics system, as, for exam-
ple, the different pipeline stages and respective capabili-
ties, CPU/GPU communication issues and driver and API
quirks.

In this work we demonstrate how to cast SMAC [5],
a computational fluid dynamics algorithm used in engi-
neering applications, as one such carefully constructed se-
quence. We will see that in some cases, this GPU version
outperforms a single-CPU reference implementation by as
much as 21 times; on average our GPU implementation runs
sixteen times faster.

2. Related Work

Stam’s stable fluids [15] are a standard computer graph-
ics technique for the simulation of fluid dynamics. Stam’s
solver relies on the Hodge decomposition principle and a
projection operator. Being an unconditionally stable solver,
it is able to use much larger timesteps than explicit solvers,
that typically are stable only under certain conditions. Al-
though Stam’s solution to the Navier-Stokes equations pro-
duce visually pleasing fluids, the implicit solver creates too
much numerical dissipation. This deteriorates the solution
to the point where it has no more relation to fluids in real
life. Since we are interested in using the GPU as a numer-
ical co-processor, we must not allow experimental discrep-
ancies in the simulations.

Stable fluids running on graphics hardware are abundant
in the literature [1] [10]. Also related is Goodnight et al.’s
multigrid solver [4], which is used to solve the stream por-
tion of a stream-vorticity formulation of the Navier-Stok-
es equations. Harris et al. [8] show that a variety of natural
phenomena can be simulated efficiently in graphics hard-
ware. Harris et al. [7] also show a simulation of cloud dy-
namics running on graphics hardware, using Stam’s stable
fluids as the dynamics engine.

Recently, Buck et al. [14] developed a data-parallel pro-
gramming language that allows the user to abstract away
from the graphics API, letting the compiler convert the code
to the specific calls. This is a major step towards the percep-
tion of the GPU as a viable computing platform by the gen-
eral developer.

3. The SMAC Method

3.1. The Navier-Stokes Equations

The Navier-Stokes equations are a standard tool for deal-
ing with fluid dynamics, and the SMAC method relies
on a discretization of these equations. The incompressible
Navier-Stokes equations, in their vector form, are:

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u + g, (1)

∇ · u = 0 (2)

whereu is the velocity vector field andp is the pressure
scalar field.ν and ρ are the viscosity and the density of
the fluid, andg represents external forces acting on all of
the fluid (gravity, for example). Our implementation uses
the adimensional, two-component cartesian version of the
equations:

∂u

∂t
+

∂p

∂x
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
+ gx, (3)

Figure 2. Staggered grid discretization.

∂v

∂t
+

∂p

∂y
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂(uv)

∂x
− ∂(v2)

∂y
+ gy, (4)

∂u

∂x
+

∂v

∂y
= 0 (5)

whereRe is the Reynolds number, relating viscous and dy-
namic forces.

3.2. Boundary Conditions and Domain Discretiza-
tion

We assume a rectangular domain[0, w] × [0, h] ⊂ R2

in which we restrict the simulation. This means we have
to deal with the appropriate boundary conditions along the
borders of the domain. We implemented boundary condi-
tions that simulate walls, fluid inflow, and fluid outflow,
which allow a variety of real-life problems to be modeled.
The wall and inflow are Dirichlet boundary conditions: the
velocity field has a certain fixed value at the boundary. The
outflow condition is different. Since this condition is not a
physical condition, we approximate the outflow condition
by assuming that the fluid that leaves the domain is unin-
teresting, and behaves exactly as the neighborhood of the
boundary that is inside the domain. This gives us Neumann
conditions: the derivative of the velocity field is fixed across
the boundary (in our case, at zero). In the following, we first
explain the simpler case of domains without obstacles.

To solve the equations numerically, we approximate the
rectangular subset ofR2 with a regular grid, ie. the velocity
and pressure scalar fields are sampled at regular intervals.
We discretized the domain using astaggered grid, which
means that different variables are sampled in different po-
sitions. This representation is used because of its better nu-
merical properties [5]. The grid layout for our simulation is
shown in Figure 2.

Figure 3. The thicker line is the boundary, and
the shaded cells are the boundary strip. The
circles represent the sampling positions. No-
tice that some points on the boundary are
not sampled, hence the need for a boundary
strip.

The boundary conditions in the grid are simulated by
adding aboundary strip. The boundary strip is a line sur-
rounding the grid cells that will be used to ensure that the
desired boundary condition holds. In Figure 3, we show one
corner of the boundary strip.

We can set the boundary strip appropriately to create the
boundary conditions. Consider for example the wall bound-
ary condition, where the velocity components must vanish.
The values that are sampled directly on the boundary can
simply be set to zero. For values that are not sampled di-
rectly on the boundary, we assume a linear interpolation of
the fields, and set the boundary strip value so that the aver-
age of the two values becomes zero. This can be applied to
all boundary conditions.

3.3. Discretization of the Equations

The Navier-Stokes equation will be solved by time-
stepping: from known velocities at timet, we compute new
values at timet + ∆t. The values in the varying timesteps
will be calledu(0), u(1), To discretize the Navier-Stokes
equations, we first introduce the following equations:

F = u
(n)

+ δt

[
1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
−

∂(u2)

∂x
−

∂(uv)

∂y
− gx

]
(6)

G = v
(n)

+ δt

[
1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
−

∂(uv)

∂x
−

∂(v2)

∂y
− gy

]
(7)

Rearranging 3 and 4, and discretizing the time variable
with forward differences, we have

u(n+1) = F − δt
∂p

∂x
, v(n+1) = G− δt

∂p

∂y
(8)

This gives us a way to find the values for the velocity
field in the next step.F andG, when discretized, will de-
pend only on known values ofu andv and can be computed
directly. We use central differences and a hybrid donor cell
scheme for the discretization of the quadratic terms, follow-
ing the reference CPU solution [5]. We are left to determine
the pressure values. To this end, we substitute the continu-
ous version of Equations (8) into Equation (5) to obtain a
Poisson equation:

∂2p(n+1)

∂x2
+

∂2p(n+1)

∂y2
=

1
∂t

(
∂F (n)

∂x
+

∂G(n)

∂y

)
(9)

When discretizing the pressure values, we notice that we
cannot compute them directly. We have to solve a system of
linear equations, with as many unknowns as there are pres-
sure samples in the grid. This can be solved with many dif-
ferent methods, such as Jacobi relaxation, SOR, conjugate
gradients, etc. With the pressure values, we can determine
the velocity values for the next timestep, using Equations 8.
We then repeat the process for the next timestep.

3.4. Stability Conditions

SMAC is an explicit method, and, as most such meth-
ods, is not unconditionally stable. To guarantee stability, we
have to make sure that these inequalities hold:

2δt

Re
<

(
1

δx2
+

1
δy2

)−1

(10)

|umax|δt < δx , |vmax|δt < δy (11)

Here,δt, δx andδy refer to the timestep sizes, and distance
between horizontal and vertical grid lines, andumax and
vmax are the highest velocity components in the domain.
During the course of the simulation,δx andδy are fixed,
so we must changeδt accordingly. In practice, one wants to
use a safety multiplier0 < s < 1 to scale downδt.

4. The Implementation in a GPU

In this section we show the GPU implementation of the
SMAC method using NVIDIA’s NV35 and NV40 architec-
tures. First we show how the data structures are stored into
texture memory, followed by the presentation of all pro-
grams used to implement the algorithm.

4.1. Representation

We use a set of floating-point textures to store the val-
ues of the velocity fields and intermediate variables. These
textures are more precisely calledpbuffers, or pixel buffers,

because they can be also the target of a rendering primi-
tive, similar to writing to the frame buffer. We will have five
pbuffers:

• uv: This will store the velocity field. One channel will
store theu values, and the other will storev.

• FG: Thispbufferwill be used to store the intermediate
F and G values, each on one channel.

• p: This pbufferwill store the pressure values.

• ink : This pbufferwill store ink values, not used in the
simulation but used for the visualization of the veloc-
ity field.

• r : This auxiliary buffer will be used inreductionoper-
ations described later.

We will have an additional status texture that will sig-
nal whether a cell is an obstacle or a fluid cell. For now, the
only obstacles are the wall boundary conditions. It is im-
portant to mention that the NV35 and the NV40 do not al-
low simultaneous reads and writes to the same same surface
[11], which are needed by some iterative algorithms. To cir-
cumvent this problem, we use a standard GPU technique
calledping-pong rendering, which alternates between writ-
ing to texturea while reading from textureb and vice-versa.
Therefore, ther , uv andp pbuffershave two surfaces, and
take twice the amount of memory.

4.2. Setting the Boundary Conditions

The first step in the algorithm is to enforce the bound-
ary conditions. A fragment program that reads the velocity
values and the status texture gets the necessary texture off-
sets and determines the correct velocity components for the
boundaries. We need to use the right offsets because bound-
aries in different directions are determined from different
neighbors. All of our boundary conditions can be calculated
with one fragment program when we notice that they share
a common structure: for each component (in the 2D case,
only u andv), we only need to sample a direct neighbor.
Then, the boundary conditions are of the following form:

uij = αuij + βuneighbor

We store the appropriateα, β values, along with the
offsets to determine the neighbor, in the status texture. If
the cell happens not to be a boundary cell, we only set
α = 1, β = 0. This fragment program is used to render
a domain-sized quadrilateral.

4.3. Computing FG

The velocity field with enforced boundary conditions is
used to compute theFG buffer. TheFG pbuffer is com-
puted simply by rendering another domain-sized quad, us-

ing the uv pbuffer as input, and a fragment program that
represents the discretization of Equations (6) and (7).

4.4. Determining Pressure Values

With the FG values, we can now determine the pres-
sure value. As mentioned above, we must solve the equa-
tion system generated by the Poisson equation discretiza-
tion. In CPUs, SOR is the classical method used to solve
these systems, because of the low memory requirements and
the good convergence properties. The main idea of SOR is
to use, in iterationit, not only the values of the pressure in
the iterationit − 1, but the values init that have just been
calculated. In a GPU, unfortunately, we cannot do that effi-
ciently: it would require reading and writing the same tex-
ture simultaneously.

The solution we adopted is to implement Jacobi relax-
ation as a fragment program. To check for convergence, we
must see if the norm of the residual has gone below a user-
specified threshold. The norm is a computation that com-
bines all of the values in a texture, differently from every
other fragment program described so far. We must find a
special way of doing the calculation, since data-parallel ar-
chitectures don’t usually provide such a means of combina-
tion.

We implement what is called areduction. In each re-
duction pass, we combine values of a local neighborhood
into a single cell, and recursively do this until we have but
one cell. This cell will hold the result of the combination of
all original cells. Figure 4 illustrates the process. Not only
this computation is significantly more expensive than the re-
laxation step, there is a measurable overhead in switching
between fragment programs andpbuffers. We use a more
clever scheme to reduce the number of switches: instead
of computing the residual at each relaxation step, we adap-
tively determine whether a residual calculation is necessary,
based on previous results using an exponential backoff al-
gorithm. That is, we calculate the residual for theith time
only after2i relaxation steps. After the first pressure solu-
tion is determined, we use the number of relaxation steps
that were necessary in the previous timestep as an estimate
for the current one. This results in significantly better per-
formance.

4.5. Computing thet(n+1) Velocity Field

After computing the pressure values, we can determine
the velocity field for the next timestep using Equation (8).
This is done by another fragment program that takes the ap-
propriate textures and renders, again, a domain-sized quad.
The final step is ensuring that the stability conditions (10)
and (11) hold.

Figure 4. Combining all elements in a SIMD
architecture through reductions.

Figure 5. An ambiguous obstacle: should the
boundary strip use the north or the south
cell?

The first condition is easy to determine, since it is con-
stant for all timesteps and can be pre-calculated. The other
ones, though, require the computation of the maximum ve-
locity components. This is an operation that requires a com-
bination of all the grid values, and again a reduction is
needed. This time, though, we use the maximum of the
neighbors instead of the sum as the reduction operation.

4.6. Obstacles

To implement obstacles, we simply extend the idea used
in the wall boundary condition to general places inside the
domain. The status texture will hold a special value to de-
note a wall for visualization purposes, but there is no need
to change the boundary fragment program. The original for-
mulation handles the walls seamlessly.

One must take into account, however, that not all domain
configurations are valid. The main problem are thin walls,
in which the boundary condition is underspecified, as can
be seen in Figure 5. Remember that a boundary condition
is specified by relating the velocity value with a neighbor.
In that case, there is an ambiguity, as we could choose from
both the upper or the lower neighbord. This can be easily
fixed with a finer subdivision or with a thicker boundary, so
it is not a critical issue.

4.7. Visualization

Usually, the simulation of Navier-Stokes is not fast
enough to allow interactivity, and so the results are simply

stored in a file to be interpreted later. We instead take advan-
tage of the fact that the simulation runs at interactive rates,
and that the data is already in the graphics memory to im-
plement interactive visualization tools.

We developed a visualization tool inspired on the use of
colored smoke in real-life airflow visualization. We store,
in addition to the velocity fields, anink field, which is a
passive field that does not affect the velocity in any way.
The ink field is advected by the velocity field, and the mo-
tion of the ink is used to visualize features such as vortices.
Ink emittersof different colors can be arbitrarily placed and
moved around in the domain, allowing to investigate areas
of flow mixture or separation.

The advection step occurs right after the boundary con-
ditions are enforced. A first shot in an algorithm for the ad-
vection would be to get the current velocity at the center
of the cell, and, using the timestep value, determine the po-
sition for this parcel of fluid. This has two issues: the first
one is that we would have to write to different cells, be-
cause the timestep never takes an ink particle more than a
grid width or height (consider the stability conditions for
the discretization). Aside from that, there’s a more serious
problem: we don’t know, prior to running the fragment pro-
gram, what are the cells in which to write our results. This
is known as ascatteroperation [1], and is one that is miss-
ing from GPUs: the rasterization issues a fixed output place
for each fragment. We need to change the scatter operation
by agatherone: an operation in which we don’t know, prior
to running the program, what are the cells we willread. This
is implemented in GPUs through the use ofdependent tex-
turing [8]. We can switch the scatter operation for a gather
operation using the idea illustrated in Figure 6. Instead of
determining the position that the ink in the present position
will be, we will determine what portion of ink was in a past
position. To do this, we assume that the velocity field is suf-
ficiently smooth, and we use a step backward in time using
the present velocity. We have to sample the velocity at cen-
ter of the grid cell, because that’s where the ink is stored.
This requires an appropriate interpolation.

This is certainly not the only way of implementing visu-
alizations of vector fields; see, for instance, [2] and [16].

5. Results

To judge the performance of the GPU implementation,
we compared our solution to a CPU reference code pro-
vided by Griebel et al [5]. We used a classical CFD veri-
fication problem, thelid-driven cavity. The problem begins
with the fluid in a stationary state, and the fluid is moved by
the drag of a rotating lid. This is asteadyproblem, no mat-
ter what are the conditions such as Reynolds number and lid
velocity: whent increases, the velocity field tends to stabi-

Figure 6. Stepping backward in time to avoid
a scatter operation.

CPU 32× 32 64× 64 128× 128
Re = 100 1.73s 35.71s 428.05s
Re = 1000 5.52s 122.47s 903.63s

NV35 32× 32 64× 64 128× 128
Re = 100 3.36s 13.34s 60.29s
Re = 1000 6.14s 28.60s 110.36s

NV40 32× 32 64× 64 128× 128
Re = 100 1.54s 5.29s 30.79s
Re = 1000 2.11s 9.15s 42.89s

Table 1. Timings for CPU, NV35 and NV40 so-
lutions, respectively.

lize. Knowing this, we run the simulations until the changes
in the velocity field are negligible.

We conducted our tests using two different Reynolds
numbers and three different grid sizes. The results can be
seen in Table 1. Figure 7 shows the ratio of improvement
of the GPU solution. The CPU is a Pentium IV running at
2 GHz, and the GPUs are a GeForce FX 5900(NV35) and
GeForce 6800 Ultra(NV40). Both programs were compiled
with all optimization options enabled, using Microsoft Vi-
sual Studio .NET 2003. Our GPU implementation, with all
source code for the vertex and fragment programs, is avail-
able athttp://www.sci.utah.edu/˜cscheid/smac .

As we can see, the only case where the GPU was out-
performed by the CPU was in very small grids with the
NV35. This is a situation where convergence is very quick,
and the overhead due topbufferswitches [1] probably over-
shadowed the parallel work of the GPU. Also, the ratio
between GPU computation and CPU-GPU communication
was smallest in this case. In all the other situations, the GPU
implementation was significantly faster, with the NV40
achieving a speedup factor of 21 in large grids with large
Reynolds numbers.

Figure 7. Ratio between GPU and CPU tim-
ings

5.1. Quality

To judge the quality of the GPU implementation when
compared to the reference CPU implementation, we ran
both programs with exactly the same problem specifica-
tions, and compared the velocity fields at each timestep.
In our experiments, the difference between velocity compo-
nents computed in the two programs was always less than
10−2, and most of the time less than10−3. The problems
had velocity ranges between0 and1. The largest differences
were found in high pressure areas, probably due to the dif-
ference between the Jacobi and the SOR algorithms.

The reference CPU implementation didn’t allow for gen-
eral domains, so for that part of the implementation, we
had to rely on qualitative measurements. For example, we
expect vortices around corners with high speed fluid, and
we can see this in Figure 9. Some well-known phenomena,
such as theKárman vortex street[5], were also experienced
in our software, in accordance to experimental results. See
Figure 12.

6. Analysis

The GPU achieves top performance when doing simple
calculations on massive amounts of data, and this is the case
in our algorithm. Most of the computation is done on the
GPU. The CPU only orchestrates the different GPU pro-
grams and buffers, adjusts the timestep and determines the
convergence of the Poisson equation.

Measuring the amount of time taken in each part of our
algorithm, we noticed that more than 95% percent of the
time was spent solving the Poisson equation. This was the
main motivation for the exponential backoff residual calcu-
lation step. This change doubled the overall performance.

We could have implemented a multigrid solver for the Pois-
son equation, such as the one developed by Goodnight et al.
[4]. This would have meant a very significant performance
increase. We chose not to do so because we did not have a
suitable CPU multigrid code to compare to, and we did not
want to skew the results in either way. For a real-life appli-
cation, a multigrid solver would probably have meant an-
other order-of-magnitude performance increase.

In the simulation depicted in Figure 1, we have a1024×
128 grid, and the simulation runs at approximately 20 fra-
mes per second, allowing real-time visualization and inter-
action.

7. Future Work and Conclusion

The Navier-Stokes GPU solver shown here can be eas-
ily extended to three dimensions. Theuv andFG pbuffers
would have to hold an additional channel. Additionally,
we can’t use 3D textures aspbuffers, so the texture layout
would probably follow [7]. The fragment programs would
not fundamentally change, and the overall algorithm struc-
ture would stay the same.

A more ambitious change is to incorporate free bound-
ary value problems to our solver. In this class of problems,
we have to determine both the velocity field of the fluid and
the interface between the fluid and the exterior (for sloshing
fluid simulations, for example). The approach that is pro-
posed in the SMAC algorithm is to, starting with a known
fluid domain, place particles throughout the domain and
then displace them according to the velocity field. At the
next timestep, the algorithm checks whether any particles
arrived in cells that had no fluid. These cells are then appro-
priately marked, and the simulation continues. We can’t do
that directly on the GPU, because that would require a scat-
ter operation. A possible solution is to use thevolume-of-
fluid method [5]. The volume-of-fluid method keeps track
of the fraction of the fluid that leave the cells through the
edges. This way, all cells that are partially filled are marked
as border cells, the ones completely filled are marked as
fluid cells, and the ones without any fluid are marked as
empty cells. Such a scheme could be implemented using
GPUs, since the calculation of fluid transfer between cells
can be done for each cell individually, without having to
write to arbitrary locations. However, this remains to be im-
plemented.

Nevertheless, we have shown that the GPU is a viable
computing engine for the complete solution of the Navier-
Stokes via a explicit solver, suitable for engineering con-
texts. Our solution takes advantage of the streaming nature
of the GPU and minimizes the CPU/GPU interaction, re-
sulting in the high performances reported. We hope that the
fact that GPU performance growth is largely outpacing the

CPU will serve as an additional motivation for the imple-
mentation of other similar applications.

8. Acknowledgments

The authors thank NVIDIA for providing the graphics
hardware used in this paper, specially the NV40 reference
board and drivers. We specially thank Nick Triantos for a
most informative talk at the University of Utah about the
NVIDIA GPUs architectural issues. We also acknowledge
the help and suggestions of the anonymous reviewers.

References

[1] J. Bolz, I. Farmer, E. Grinspun, P. Schröder.Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid.
ACM Transactions on Graphics (Proceedings of SIGGRAPH
2003), 2003.

[2] B. Cabral, L. Leedom.Imaging vector fields using line inte-
gral convolution. Proceedings of SIGGRAPH 1993.

[3] J. Comba, C. Dietrich, C. Pagot, C. Scheidegger.Compu-
tation on GPUs: From A Programmable Pipeline to an Ef-
ficient Stream Processor. Revista de Inforḿatica Téorica e
Aplicada, Volume X, Ńumero 2, 2003.

[4] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, G.
Humphreys.A Multigrid Solver for Boundary-Value Prob-
lems Using Programmable Graphics Hardware. Proceedings
of the Eurographics/SIGGRAPH Graphics Hardware Work-
shop, 2003.

[5] M. Griebel, T. Dornseifer, T. Neunhoffer,Numerical Simula-
tion in Fluid Dynamics. SIAM, 1998.

[6] N. Govindaraju, S. Redon, M. Lin, D. Manocha.CULLIDE:
Interactive Collision Detection Between Complex Models in
Large Environments using Graphics Hardware. Proceedings
of the Eurographics/SIGGRAPH Graphics Hardware Work-
shop, 2003.

[7] M. Harris, W. Baxter III, T. Scheuermann, A. Lastra.Simula-
tion of Cloud Dynamics on Graphics Hardware. proceedings
of the Eurographics/SIGGRAPH Graphics Hardware Work-
shop, 2003.

[8] M. Harris, G. Coombe, T. Scheuermann, A. Lastra.
Physically-Based Visual Simulation on Graphics Hard-
ware. Proceedings of the Eurographics/SIGGRAPH Graph-
ics Hardware Workshop, 2002.

[9] G. Kedem, Y. Ishihara.Brute Force Attack on UNIX
passwords with SIMD Computer. Proceedings of the 8th
USENIX Security Symposium, 1999.

[10] J. Krüger, R. Westermann.Linear Algebra Operators for
GPU Implementation of Numerical Algorithms. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2003),
2003.

[11] NVIDIA Corporation. OpenGL Extension
Specifications. Web site last visited on May
17th, 2004. http://developer.nvidia.com/

object/nvidia opengl specs.html

[12] E. Larsen, D. McCallister.Fast Matrix Multiplies using
Graphics Hardware. Supercomputing 2001.

[13] T. Purcell, I. Buck, W. Mark, P. Hanrahan.Ray Tracing on
Programmable Graphics Hardware. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2002), 2002.

[14] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston, P. Hanrahan.Brook for GPUs: Stream Computing
on Graphics Hardware. To appear in ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2004), 2004.

[15] J. Stam.Stable Fluids. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 1999), 1999.

[16] J. van Wijk.Image-based Flow Visualization. ACM Transac-
tion on Graphics (Proceedings of SIGGRAPH 2002), 2002.

Figure 8. Lid-driven cavity, 256×256 grid, Re =
10000. The counter-eddies in the corners are
experimentally confirmed for large Re.

Figure 9. Domain with obstacles. 128 × 128
grid, Re = 1000, Inflow in the lower west, out-
flow everywhere else.

Figure 10. Smoke simulation with large Re.
128 × 1024 grid, Re = 10000, inflow in the
south, outflow in the north.

Figure 11. Wind tunnel mock-up. 256×64 grid,
Re = 100, inflow in the west, outflow in the
east.

Figure 12. The Kárman vortex street . 256× 64
grid, Re = 1000, inflow in the west, outflow in
the east.

