
Multiple-Depth Shadow Maps

Christian Azambuja Pagot João Luiz Dihl Comba Manuel Menezes de Oliveira Neto

Instituto de Inforḿatica - UFRGS
{capagot, comba, oliveira}@inf.ufrgs.br

Abstract

Traditional shadow maps store a single depth value per
cell, leading to a binary outcome by the shadow test (ei-
ther lit or in shadow), and are prone to produce aliased
shadow borders. We present a new approach that produces
better estimates of shadow percentages and, in combina-
tion with percentage closer filtering (PCF), reduces aliasing
artifacts using smaller kernel sizes. The new algorithm ex-
tends the notions of shadow maps and shadow tests to sup-
port the representation of multiple depth values per shadow
map cell, as well as multi-valued shadow tests. This new ap-
proach has the potential for hardware implementation, but
can also be implemented exploiting the programmable ca-
pabilities of recent graphics cards.

1. Introduction

Shadows are very important scene elements, providing
visual cues about the spatial relationships among objects
and light sources in a scene. Recently several algorithms
are being revisited for possible hardware implementation.
In the case of shadow computation, the Shadow Mapping
algorithm originally proposed by Williams [21] is suitable
for such an implementation due to its simplicity and gen-
erality. However, it suffers from aliasing artifacts and self-
shadowing, problems still under investigation [13].

In this work, we present an extension of Shadow Map-
ping called Multiple-Depth Shadow Mapping(MDSM),
that significantly reduces aliasing artifacts with a small in-
crease in computational cost. MDSM supports the repre-
sentation and test of multiple depth values per shadow map
cell. As a result, the algorithm produces better estimates of
shadow percentages using the Percentage Closer Filtering
(PCF) algorithm. We demonstrate the advantages and effec-
tiveness of this new approach both analytically and experi-
mentally.

Figure 1 illustrates the proposed technique in a sample
scene comparing details of its shadows in different situa-
tions. In Figure 1(b) the shadow boundary is obtained with

the use of conventional shadow mapping in combination
with a 4x4 PCF kernel. Figure 1(c)-(d) shows the results
obtained using a 3x3 PCF kernel and the MDSM approach
with 2 and 3 depth values respectively. Note that the transi-
tions between the lit and shadow regions are similar, show-
ing that the use of smaller PCF kernels with MDSM so-
lutions produce results comparable to the standard shadow
mapping solution with bigger PCF kernels.

(a) (b)

(c) (d)

Figure 1. (a) Sample scene containing shad-
ows. (b) Shadow borders computed using
the conventional shadow mapping algorithm
with a 4x4 PCF kernel. Same view using a (c)
two-depth shadow map with a 3x3 PCF ker-
nel and (d) three-depth shadow map with a
3x3 PCF kernel.



The main contributions of this work can be summarized
as follows

• A generalization of the notions of shadow map and
shadow test to support the representation of multiple
depth values per shadow map cell. The new multiple-
depth shadow test can produce a larger range of shade
outcomes when compared to the conventional shadow
test (Section 4).

• An analytical characterization of the quality of the
shadows created by the Shadow Mapping algorithm as
a function of the number of different values produced
by the depth test, and the number of samples used by
the PCF algorithm (Section 4).

• An extension of the Shadow Mapping algorithm ca-
pable of producing good quality antialiased shadow
boundaries through the use of smaller PCF kernels.
(Section 4).

The remaining of the paper is organized as follows:
Section 2 provides a review of the original Shadow Map-
ping [21] and PCF [15] algorithms, followed by a discus-
sion of related work in section 3. Section 4 formalizes the
notions of multiple-depth shadow maps and presents a par-
ticular formalization of multiple-depth shadow tests. It also
discusses some design alternatives for the implementation
of multiple-depth shadow maps. Section 5 presents some
results obtained with the proposed approach, followed by a
discussion on the use of MDSMs. Section 7 summarizes the
paper.

2. Background

2.1. The Shadow Mapping Algorithm

Several algorithms for shadow computation have been
described in the literature, and good surveys can be found
in [3], [24], [13] and [6]. Shadow algorithms are usually
classified according to the space in which shadow computa-
tion takes place: object-space or image-space.Object-space
algorithms involve geometric computation of the shadow,
such as in shadow-volume computations [8], [7], and ray-
tracing [20]. By contrast,image-spacealgorithms compute
shadows based on visibility information obtained in image
representations. The Shadow Mapping algorithm [21], also
called backward Shadow Mapping, is the classical exam-
ple of this class and constitutes the focus of this paper.

The Shadow Mapping algorithm [21] is a two-pass tech-
nique for shadow generation. In the first pass, the scene is
rendered from the point of view of the light source into a
depth image (shadow map). In a subsequent step, the scene
is rendered again, this time from the camera’s viewpoint.
In order to decide whether each pixel in the camera’s view

is in shadow with respect to the light source, the coordi-
nates of the point are transformed from eye space into light
space, and projected into the light source image plane. We
access the shadow map to recover the corresponding depth
value, and if the stored value is smaller than the projected
depth, the point is considered in shadow; otherwise it is lit.

This algorithm works for any shape that can be rendered
into a z-buffer. Unfortunately, it suffers from aliasing and
limited precision of depth values. Aliasing happens because
a shadow map is a discrete representation of visibility infor-
mation considered from the light source viewpoint. Limited
precision can lead to self-shadowing artifacts.

2.2. Percentage Closer Filtering

The Percentage Closer Filtering algorithm [15] (PCF)
significantly reduces aliasing artifacts in shadow mapping
applications. It performs a filtering operation over the out-
comes of shadow tests (0 or 1) produced by the Shadow
Mapping algorithm. For each cell, PCF performs shadow
tests at locations defined by a regular grid or using stochas-
tic sampling. The outcomes from all shadow tests are aver-
aged to produce the percentage of pixels in shadow. Figure
2 shows an example using a 3x3 PCF kernel.

Figure 2. In the PCF algorithm, additional
shadow tests are performed to compare a
given depth value (49.8) against depth values
of neighboring elements in a shadow map.
The resulting outcomes are combined to de-
termine the amount of attenuation to be ap-
plied to the pixel (5/9=0.55).

PCF became popular due to its implementation in Ren-
derman [17], a rendering system targeted towards off-line
rendering. While the results obtained with the use of PCF
can be quite impressive, the big disadvantage of the method
is its cost: for reasonable results, it is necessary the use of
filters with 16 to 25 samples, which substantially increases
the number of shadow map accesses and computations per
pixel. This makes the use of PCF less attractive for interac-
tive applications.



3. Related Work

The PCF approach [15] addresses the aliasing artifacts
inherent to Shadow Mapping. Although the biggest cause
of aliasing in the shadow mapping algorithm is the use of
inadequate shadow map resolution, several approaches per-
form antialising by simply blurring shadow boundaries. Fer-
nando et al. [10] minimizes aliasing artifacts by replacing
ordinary shadow maps with an adaptive hierarchical struc-
ture that provides higher resolution to regions containing
shadow boundaries.

The first dedicated shadow mapping hardware appeared
in the high-end Reality Engine [2] by SGI. Before dedicated
shadow-mapping hardware was available in the commodity
graphics cards, the shadow test was simulated using the al-
pha test on the resulting texture values. Heidrich [12] ex-
tended the precision of the depth test from 8 to 16 bits us-
ing a combination of two 8-bit alpha tests that can be per-
formed in the pixel shader hardware of NVIDIA’s GeForce
series. The advance of graphics hardware allowed shadow
maps to be implemented in hardware using the concept of
projective textures [16]. Such dedicated hardware [13] can
be found on consumer graphics boards from NVIDIA and
ATI.

Although the use of multiple depth values in shadow
maps has also appeared in some other papers [19] [23] [18],
the way they were used, and intended purposes, were differ-
ent from ours. Layered Attenuation Maps [1] use an image-
based rendering technique to simulate soft shadows. Deep
shadow maps [14] provides an efficient way to compute re-
alistic shadows for structures such as hair, fur and smoke.
Unlike conventional shadow maps, deep shadow maps store
a visibility function at each cell. Such functions represent
how much light is attenuated as it penetrates the object.
Aliasing reduction is addressed with the use of jittered sam-
ples and mip-mapping [22].

Brabec and Seidel [5] present a hardware implementa-
tion of PCF called Fast PCF. It implements a PCF with 4
samples by representing 4 depth values (8 bits each) in a
single texture element. We generalize the concepts exposed
in [5], further exploring how the PCF can benefit from mul-
tiple depth values.

4. Multiple-Depth Shadow Maps

4.1. Motivation

The motivation for this work was to reduce the cost of
using PCF without degrading the quality of shadow bound-
aries. For this discussion, we need first to evaluate the costs
of the shadow map computations.

The overall cost of a traditional shadow mapping com-
putation is related to: (1) the number of fragments gener-

ated by the scene (calledf ), (2) the transformation from
world to light space (calledcosttransf ), (3) a texture ac-
cess to the shadow map to recover a depth value (called
costtexture) and (4) the shadow test (calledcostst). The use
of PCF requires issuing several shadow tests and averag-
ing their results into a quantity that express the percentage
of shadow associated with central pixel. If a PCF with a ker-
nel of k samples is used, the shadow test and texture costs
are scaled byk. The overall cost of the shadow mapping al-
gorithm can be expressed as:

costsm = f×(costtransf +k×(costtexture+costst)) (1)

The distinct results (shadow percentages) returned by a PCF
kernel withk samples isk + 1. Increasingk improves PCF
results, allowing more distinct shadow percentages at the
cost of additional texture accesses. On the other hand, if the
results of the shadow test were not constrained to a binary
range, the number of shading values generated by the PCF
filter would increase at the expense of only additional logi-
cal tests. One way to accomplish this is through the use of
a more general shadow map, capable of storing more then
one depth value per cell.

4.2. Generalization of Multiple-Depth Shadow
Map

In this section we formalize the notions of Multiple-
Depth Shadow Map and Multiple-Depth Shadow Test.

• Multiple-Depth Shadow Maps: A multiple-depth
shadow map(n-SM) is a shadow map that storesn
depth values per cell. For convenience, we will as-
sume that inside each cell then depth values,
{Z1, Z2, ..., Zn}, are sorted in descending order, i.e.,
Z1 ≥ Z2 ≥ ... ≥ Zn−1 ≥ Zn.

• Multiple-Depth Shadow Test: An n-shadow test(n-
ST) is an extension of the regular shadow test that per-
forms up ton comparisons against the ordered values
stored in a shadow map cell. The outcome of the test is
given by the ratiosc = s/n, wheres ∈ {0, .., n}, and
can assumew = n+1 different and equally spaced val-
ues in the range[0, 1]. Conceptually, the process can be
described as follows: given a depth valued to be tested
against ann-SM, the shadow coverage returned by the
n-ST issc = 1, if d > Zn, otherwisesc = (i− 1)/n,
whereZi is the largestZ value (stored in then-SM)
smaller thand. A traditional Shadow Map is a spe-
cial case of a Multiple-Depth Shadow Map for which
n = 1, and can be written as 1-SM. Likewise, its cor-
responding depth test is a 1-shadow test (1-ST).

A PCF can be applied to a multiple-depth shadow map
in the regular way. In order to make our description more
precise, the following notation is introduced.



• PCF(k,n): A PCF(k,n) is ak-sample PCF applied to
a n-SM. It can produce up todmax = nk + 1 differ-
ent outcomes. The valuedmax is obtained by recalling
that ann-depth test can produce up tow = n + 1 dif-
ferent results (i.e., up ton non-zero values), adding up
to a total ofdmax = nk + 1 different outcomes.

Using this notation, a PCF(1,1) is simply the conven-
tional shadow map proposal [21]. A PCF(4,1) is a PCF us-
ing 4 samples applied to a conventional shadow map, which
produces up to 5 different outcomes (0, 0.25, 0.5, 0.75, 1).

Table 1 shows the number of outcomes produced by the
PCF(k,n) for some values ofk andn.

k \ n 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9
4 5 9 13 17 21 25 29 33
9 10 19 28 37 46 55 64 73
16 17 33 49 65 81 97 113 129
25 26 51 76 101 126 151 176 201

Table 1. Number of outcomes produced by a
PCF(k,n),

From table 1 one sees that a PCF(9,2) can produce up to
19 (2 × 9 + 1) different shading values, whereas the maxi-
mum number of shading values produced by a PCF(16,1) is
17 (1× 16 + 1). In other words, the use of a 2-SM with a 9
sample PCF can potentially produce smoother shadow bor-
ders than a conventional shadow map (1-SM) with a 16 sam-
ple PCF. For this particular example, one can expect an im-
provement in shading quality of 11.7% using only 56% of
the PCF kernel samples. Figure 3 compares the number of
shading values produced by MDSMs (for values ofn vary-
ing from 1 to 4 when used in combination with PCFs of var-
ious sizes.)

4.3. Selecting Depth Values

In this section we focus our discussion to the selection of
depth values for two specific classes of MDSMs: the 2-SM
and 3-SM. Selecting depth values for higher-order shadow
maps is more involved and still open for investigation.

For each cell of a MDSM, the selection of depth values
must always include the corresponding depth value of the
standard shadow map. This is required to preserve the ba-
sic structure of the shadow. Therefore, only one additional
depth value is required for the 2-SM, and two for the 3-SM.

One of the goals of using additional depth values is to
increase the quality of shadow boundaries, which can be
accomplished by increasing the number of outcomes pro-
duced by the shadow test. Therefore, the choice of addi-

Figure 3. Number of shading values ob-
tained by the combination of Multiple-Depth
Shadow Maps and PCF with different number
of samples.

tional depth values is critical for cells that are closer to
shadow borders. The information encoded in the standard
shadow map is used for this purpose, which can represent
sharp transitions along depth discontinuities, flat regions of
constant depth or smoothly varying depth regions.

We select additional depth values that make discontinu-
ities more evident by evaluatingq samples from within a
search region of the base shadow map. Once all samples
are collected, we proceed to choose the best representatives
(one or two depth values for the 2-SM and 3-SM). Two sim-
ple ways to do that include:

• Sorting: Sort all sample values and divide them inton
groups, picking a representative from each one. This
requires aO(q logq) effort.

• Maximumor minimumvalue: Chooses the maximum
or minimum (or both) values, requiring aO(q) effort.

Since the search must be performed efficiently, a small
q and a simple search criteria must be used. Therefore,
the maximum or minimum represent the cheapest solu-
tion (since it is not necessary to sort the values). Figure 4
shows the use of the composed shadow test in a 2-SM. De-
pending on the values passed to the 2-ST test, the shading
percentages that could be returned are: 0.0 (fully lit), 0.5
(50% shadowed) and 1.0 (completely in shadow). The fig-
ure presents a situation where the pixel is 50% shadowed.

4.4. Hardware Implementation

MDSMs have a good potential for hardware implemen-
tation. In the case of static scenes and light sources, the
MDSM can be pre-computed and therefore the cost of



Figure 5. Additional scenes used to test our algorithm

Figure 4. Instance of a 2-SM decision tree.

choosing additional depth values does not need to be con-
sidered. For dynamic scenes, it would be advantageous hav-
ing a special hardware to select additional depth values,
(e.g. the minimum or maximum of a neighborhood around
each shadow map cell).

Another possibility is to consider using occlusion culling
hardware of recent graphics hardware. The ATI’s Hyper-Z
technology is capable of selecting the minimum depth value
among four or sixteen depth values. However, such sam-
ples are taken from a tiled subdivision of the image plane,
which leads to severe shading artifacts at nearly regular in-
tervals. Changes to this hardware might allow for a faster
and proper selection of additional depth values.

Although a faster selection of the additional depth values
implies in some hardware modification, the storage of a 2-
SM or 3-SM does not require any modification. The texture
formats found on actual graphics hardware allows for up to
4 readable/writable channels, with 32-bit floating point pre-
cision each. It means that a 4-SM could be stored in each
cell of such a texture, and that the 4 depth values could be
efficiently fetched with only one texture access.

5. Results

We have implemented the 2-SM and 3-SM algorithms
exploiting the programmable shading capabilities available
on the NVIDIA GeForce 5800. Code was written using

OpenGl, Cg and C++. The 2-SM (3-SM) was implemented
as a 2D texture, with thez values stored in different 32-
bit floating-point color channels. This greatly improves the
overall performance since thez values can be fetched with
only one texture access. In order to compare the results of
our method with the combined use of conventional Shadow
Mapping and PCF, we have implemented PCF kernels using
3x3 (=9 samples) and 4x4 (=16 samples). The second and
third depth values were chosen as the maximum and min-
imum values on a neighborhood in the first shadow map.
Scene and shadow maps were computed at the resolution of
5122.

Figure 5 shows sample scenes used to evaluate the con-
ventional and MDSM algorithms. Figure 6 illustrates a
close view of the shadows projected on a planar surface,
rendered using different combinations of number of depth
values and number of PCF samples. In this example we il-
lustrate that results obtained with a standard shadow map
using a PCF kernels of 3x3 and 4x4 are comparable to the
results using 3-SM and a PCF kernel one dimension smaller
(2x2 and 3x3 respectively).

In Figure 7 we illustrate shadows casted into curved sur-
faces, and compare the use of the standard shadow mapping
algorithm and a 4x4 PCF filter against a 2-SM and 3-SM
using 3x3 PCF kernels. As in the previous example, the re-
sults are very similar. Note that the 3-SM produces a transi-
tion between lit and shadow regions closer to the one gener-
ated in the standard shadow map (same transition using the
2-SM is thinner).

6. Discussion

The advantages of MDSMs come at the expense of se-
lecting and storing multiple depth values in the shadow
map, and executing a more complex shadow test. At a first
glance, it might appear that we have just transferred some
overhead from the PCF filtering phase to the construction
of the MDSM. A careful analysis shows, however, that,



(a) (b)

(c) (d)

Figure 6. Comparison of standard shadow maps and MDSMs. (a)(b) standard shadow map using
PCF 3x3 and PCF 4x4 kernels respectively. (c)(d) 3-SM using a PCF 2x2 and PCF 3x3 kernels respec-
tively. Note how similar the results with smaller kernels using MDSM are to standard shadow maps
(compare (a) against (c) and (b) against (d)).

for special situations, the costs associated with MDSM are
smaller than with the standard shadow map.

A multiple-depth shadow test is slightly more expensive
than a conventional shadow test, but it is reasonable to as-
sume that logical tests are cheap and dedicated hardware
can perform all comparisons in parallel. The overhead gen-
erated during the selection of additional depth values is of
major concern. Our algorithm breaks the problem of filter-
ing in two parts, where the cost of one part is fixed and
known, which does not happen with the traditional PCF al-
gorithm.

An example helps illustrates this point, and focus our dis-
cussion on a 2-SM (cost analysis for a 3-SM is similar).
Suppose one uses a maximum (or minimum) strategy for
choosing additional depth values in aq-sample area around

each cell. It implies thatq texture fetches will be executed
around each cell of the shadow map. Lethsm andwsm be
the dimensions of the shadow map. The cost to generate
all the second values of the 2-SM (cost2value), disregard-
ing logical tests and latency times, is given by:

cost2value = q × hsm × wsm (2)

Also, letf be the number of fragments generated by the
rasterization of the scene from the camera’s view point and
let k be the number of samples of a PCF kernel, the cost
to generate a 1-SM antialiased shadowed scene (costscene)
can be expressed by

costscene = f × k (3)

The cost of a scene generated with a 2-SM or 3-SM
can be expressed as the sum of the cost to select addi-



(a) (b) (c)

(d) (e) (f)

Figure 7. Comparison of standard shadow maps and MDSMs in non-planar shadow boundaries.
(a)(d) standard shadow map and PCF 4x4. (b)(e) 2-SM and PCF 3x3. (c)(f) 3-SM and PCF 3x3.

tional depth values and the cost to generate the final an-
tialiased shadowed scene:

cost2sm scene = q × hsm × wsm + f × k (4)

The number of fragments (f ) generated by an arbi-
trary scene is variable and difficult to predict. If the scene
presents high depth complexity, the number of frag-
ments it can produce can be several times bigger than the
screen resolution. On the other hand, the number of frag-
ments generated by the shadow map, during the gen-
eration of its second values, is fixed and equal to its
resolution. Thus one can conclude that, as the num-
ber of fragments generated by a scene grows, there will be
a point where the cost to generate a PCF(k + r,1), where
r ∈ N∗ , for a scene will be greater than the cost to gen-
erate a PCF(k,2), and it can be expressed as the point
where

f >
q × hsm × wsm

r
(5)

For example, consider the resolutions used in our tests

(5122 for both screen and shadow maps), and compare the
cost of the standard shadow map using a PCF with 16 sam-
ples (4x4) against the 2-SM using a PCF with 9 samples
(3x3) - r is equal to16 − 9 = 7. In this case, the MDSM
has a smaller cost whenf > 1.28 × 5122. This represents
slightly more fragments than screen resolution, and happens
frequently for scenes with moderately depth complexity.

One can argue that visibility calculations can be com-
puted before shadowing takes place (deferred shading [9]).
In this case, we assume that shadow computation is exe-
cuted only once for each screen pixel (f = hs×ws), where
hs andws represent the screen dimensions. If we express
hs = λh ∗ hsm andws = λw ∗ wsm as scaled values of
shadow map dimensions, the use of a 2-SM is cheaper than
conventional shadow maps with bigger PCF kernels when:

λh × λw >
q

r
(6)

If the screen and the shadow maps have the same dimen-
sions, this inequality will never be satisfied ifq is larger
thanr (which is the case in the above example). However,



is not uncommon to have shadow maps with smaller reso-
lution than screen (some computer games use small shadow
maps to locally project shadows on characters). For the case
above (shadow map resolution equals to5122), it suffices
the screen resolution to be1.28 larger than that (a6562 res-
olution) for the 2-SM have a smaller cost.

7. Conclusions and Future Work

We introduced the notion of MDSMs as a generalization
of conventional shadow maps that support the representa-
tion of multiple depth values per shadow map cell as well as
multi-valued shadow tests. When combined with PCF, this
new structure produces good estimates of shadow percent-
ages and smoother shadow boundaries. Compared with con-
ventional Shadow Mapping, a smaller number of PCF sam-
ples are needed to obtain renderings of comparable quality.
We have demonstrated the effectiveness and advantages of
our approach both analytically and experimentally. Given
that Shadow Mapping has been traditionally implemented
using texture mapping hardware, our approach can signif-
icantly reduce the number of texture accesses to shadow
maps required at each frame. This is specially important
since texture accesses are a limiting factor preventing cur-
rent raster architectures from achieving higher frame rates.

MDSMs have good potential for hardware implemen-
tation and should require only minor changes to the cur-
rent graphics pipeline. Assuming that a depth value can
be satisfactorily represented using 16 bits, 128-bit texture
memories already available on recent graphics accelera-
tors can support up to 8 depth values per cell (8-SM). Al-
ternatively, MDSM can be implemented exploiting the re-
cent programmable capabilities available on current graph-
ics cards. As a future work, implementations directed to-
wards performance evalutation will be made. We also in-
tend to test different criteria for the selection of additional
depth values.

References

[1] M. Agrawala, R. Ramamoorthi, A. Heirich (HP) and Lau-
rent Moll (HP) Efficient Image-Based Methods for Render-
ing Soft ShadowsSiggraph 2000 Conference Proceedings, pp.
375-384. Addison Wesley, August 2000.

[2] K. Akeley. RealityEngine graphics. InSIGGRAPH 1993
Conference Proceedings, Annual Conference Series, August
1993, pp. 109–116.

[3] T. Akenine-Moller and E. Haines. Real-Time Rendering. 2nd
edition. A K Peters, 2002.

[4] ATI Technologies Inc. Performance Optimization
Techniques for ATI Graphics Hardware with Di-
rectX 9.0. In http://www.ati.com/developer/dx9/ATI-
DX9 Optimization.pdf.

[5] S. Brabec, Hans-Peter Seidel. Hardware-accelerated Render-
ing of Antialiased Shadows with Shadow Maps. In Computer
Graphics International (CGI) 2001 proceedings

[6] S. Brabec, T. Annen, and Hans-Peter Seidel. Practical Shadow
Mapping. InJournal of Graphics Tools, 7(4):9-18, 2002.

[7] Chin, N., Feiner, S. Near Real-Time Shadow Generation Us-
ing BSP Trees. InSIGGRAPH 1989 Conference Proceedings,
Annual Conference Series, July 1989, pp. 99-106.

[8] F. C. Crow. Shadow Algorithms for Computer Graphics. In
SIGGRAPH 1977 Conference Proceedings, Annual Confer-
ence Series, July 1977.

[9] Deering, M., S. Winner, B. Schediwy, C. Duffy, and N. Hunt.
The Triangle Processor and Normal Vector Shader: A VLSI
System for High Performance Graphics. InSIGGRAPH 1988
Conference Proceedings, pp. 21-30, 1988.

[10] R. Fernando, S. Fernandez, K. Bala, D. P. Greenberg. Adap-
tive Shadow Maps. InSIGGRAPH 2001 Conference Proceed-
ings, pp.387-390. Addison Wesley, August 2001.

[11] N. Greene, M. Kass, and G. Miller. Hierarchical Zbuffer vis-
ibility. In SIGGRAPH 1993 Conference Proceedings, Annual
Conference Series, August 1993, pp. 231–238.

[12] W. Heidrich. High-quality shading and lighting for
hardware-accelerated rendering.PhD thesis, University of
Elangen, Germany, 1999.

[13] M. Kilgard. Shadow Mapping with Today’s OpenGL Hard-
ware. InGame Developer’s Conference 2000, San Jose, CA,
2000.

[14] T. Lokovic and E. Veach. Deep Shadow Maps.SIGGRAPH
2000 Conference Proceedings, pp. 385-392. Addison Wesley,
July 2000.

[15] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering an-
tialiased shadows with depth maps. InSIGGRAPH 87 pro-
ceedings, pages 283-291, 1987.

[16] M. Segal, C. Korobkin R. Van Widenfelt, J. Foran, and P. E.
Haeberli. Fast shadows and lighting effects using texture map-
ping. InSIGGRAPH 92 proceedings, pages 249-252, 1992.

[17] S. Upstill. The Renderman Companion: A programmer’s
guide to realistic computer graphics.Addison-Wesley, Read-
ing, MA, 1990.

[18] Y. Wang and Molnar. Second-Depth Shadow Mapping.
UNC-CS Technical ReportTR94-019, 1994.

[19] D. Weiskopf and Ertl. Shadow Mapping Based on Dual
Depth Layers. InProceedings of Eurographics ’03 Short Pa-
pers, pages 53-60, 2003.

[20] T. Whitted. An improved illumination model for shaded
display. Communications of the ACM, 23(6), pp. 343–349
(1980).

[21] L. Willians. Casting curved shadows on curved surfaces. In
SIGGRAPH 78 proceedings, pages 270-274, 1978.

[22] L. Willians. Pyramidal Paramerics. InSIGGRAPH 83 pro-
ceedings, pages 1-1, 1983.

[23] Andrew Woo. The Shadow Depth Map Revisited. InD. Kirk,
editor, Graphics Gems III, pages 338-342. AP Professional,
Boston, 1992.

[24] Andrew Woo, P. Poulin, and A. Fournier. A Survey of
Shadow Algorithms.IEEE Computer Graphics and Applica-
tions: vol 10(6), pages 13-32, 1990.


