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Abstract. Many applications of geometry processing and computer vision relies on geometric properties of curves,
particularly their curvature. Several methods have been proposed to estimate the curvature of a planar curve, most
of them for curves in digital spaces. This work proposes a new method for curvature estimation based on weighted
least square fitting and local arc—length approximation. Convergence analysis of this method and noise impact
on the estimator accuracy are given. Numerical robustness issues are addressed with practical solutions. The
implementation of the method is compared to other curvature estimation methods.
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1 Introduction vergence of our estimations under reasonable conditions
over the sampling of the curve and the amplitude of the
noise. We provide a practical implementation of this method,

ddressing numerical issues with simple solutions. The pre-
iminary results show that our methods compare nicely to
the state—of-the—art, and that it has a strong stability over
different conditions of noise and sampling.

Many applications of geometry processing and computer
vision relies on geometric properties of curves. In particu-
lar, the curvature measures how a curve bends, which is on
of the most characteristic property of a curve considered for
theoretical analysis and practical applications. For exam-
ple in CAGD [1]] and in Computer Vision20], curvature
motion [10], curve reconstructioril, [1], curve compres-
sion [15], and adaptive curve approximatidh?] requires Paper outline. SectioriZintroduces the concepts and no-
accurate curvature estimators. tations from differential geometry of curves that will be
Several methods have already been proposed for curused in this work. Sectid8 discusses the previous and re-
vature estimation, most of them in the particular case of lated works. The theoretical analysis of our method is pre-
digital spaces, i.e. curves extracted from ima@pslh this sented in Sectidd Sectiorfdetails the implementation of
work, we shall consider piecewise—linear approximation of our schemes, and introduces improvements on the method
planar curves, which is a general framework that includes numerical robustness. Our algorithm is finally compared to
those digital curves. This approach leads to a clear theoretithe state—of—the—art in the last section.
cal analysis and serves directly to applications to geometric
modeling and computer graphics.

Problem statement. Discrete curves proceed from dif-
ferent sources: digital curve®|[ parametric or implicit
curves [L7], curve reconstruction1, [1]... Piecewise—
linear approximations, provides a general framework that
includes the above cases. A piecewise—linear approxima-
tion P of a planar curver is a finite sequence ofi sam-

ple points{p1, p2, ..., pm } Of r. We admit the presence of
noise. In this paper, we will try to estimate accurately the

tangent line and the curvature of the cutvat a pointp; Figure 1: The arc—lengths(¢) helps defining the tangent
of P. and the normal vectofF(t) andN(¢).

Contributions. In this paper, we introduce a new method
for curvature estimation based on weighted least square fit- )
ting and local arc—length approximation. More precisely, 2 Curvature of a planar parametric curve

we fit a second—order polynomial for each coordinate, con- A parametric curven the plane is a function: 7 C R —
sidered as a function of the arc—length. We prove the con-R2. ¢ — (x(t), y(t)), wherez andy are functions fronT to



/ In this section, we will review the most significant to us.
We implemented those methods for the comparison of Sec-

. 7 N\ tion[@ Those approaches are classified in three groups, ac-

L PR RN cording to which definition of curvature they are using (as
R~ 0 / done in [B]): tangent direction, osculating circle, derivation.
' . Most methods use a sliding window 2§ + 1 points cen-
R k=250 tered aroung;
x / Jr
N
e
w=1>0 Methods based on the tangent direction The methods
s ’ of the first group estimate the derivative of the tangent di-

. _ ) ) i rection with respect to the arc—length, i.e(s) = ¢'(s).
Figure 2: The curvature is the inverse of the radius of the ¢ gigital images, this requires to estimate the gradient of
osculating circle. Its sign corresponds to the local convexity polygonal approximation of an implicit curve. This is

of the curve. done in B] in three ways.
The first method (referred dise fitting) estimates the
R. The curver is said to beegularif = andy areC and tangent direction at the sides of a samplay a Gaussian—

(t) = %(t) never vanishes of. vyeighte_d linear fit centered at the_z left point_jat— 1 and
From now on, let us suppose thais a regular param- n_ght point atj + 1. Tr_le curvature is then e_stlmated as the

eterized curve. Tharc—lengths from the pointr(ty), to € dlﬁerence of orientation quled by the. distance between

I, to a given pointr(¢),t € I, is by definitions(t) = the points ajj — 1 andj + 1. This method is not very robust

due to the numerical imprecision on angle computation.

ftt ||t(¢)]|dt. When the curve is regulas(t) is strictly in- : )
0 The second method (referredamsain coden [6]) eval-

creasing, and has therefore an invergg. The curve can . S )

be parameterized by the arc—lengtly considering:(s) = uates the local angié(p;) = tan™" (ﬁ%) around j :

r o t(s). Along this paper, we will denote the derivation i =j —¢...j + ¢. The derivation is done by convolution

with relation to the arc—length with a prime ¢’), and the  with a derived Gaussian Kernél,: & = 6 x G,.

derivation with relation t@ by a dot ¢). However, the curvature equals the derivation with re-
The vectorT(s) = r/(s) is called thetangent vec-  spect to the arc—length. Therefore, the third method ( re-

tor. Thenormal vectorN(s) is directly orthogonal to the  ferred asresamplingin [6]) first performs a resampling of

tangent vectorT(s): N(s) = (—y/(s),2'(s)) (see Fig-  the curve by linear interpolations on the curve segments.
urel). Observe thal’(s) andN(s) are colinear, because This introduces a bias af107 which is explicitly corrected.
|T(s)|| = 1is constant. It is a curve of clas€? param- In [9], the angle is estimated as the external angle around
eterized by the arc—length, then the analytical definition of the sample points. This improves numerically the results
the curvaturex(s) follows the Frenet's formulax(s) = of [6] by avoiding right angles in the computation. This last

T’(s) - N(s). When the curve(¢) is not parameterized by ~method only uses 3 points for the approximation.
the arc—length, the curvature is given by:
Methods based on the radius of curvature. The second

K(t) = 2()g(t) — y()E(t) (1)  group of methods compute the curvature by estimating the
(#2(t) + yQ(t))% osculating circle touching the curve(s) = 1/p(s)).

In [8], the radius of the circle passing through ,, p;

Theradius of curvaturep(s) is the radius of the oscu-  andp, ., is estimated by&(p;) = \|§(pj;|l\)i\l|);?ﬁ+f)|\'
J—akyg JI¥iTaq

lating circle atr(s) (see Figur@). The absolute value of This result was improved if8[ by the area formula for

the curvature can also be defined geometricallyifty)| =  the radius of the circle circumscribed to a triangle:

1/p(s). The sign ofx(s) indicates whether the curve is | VTP —a\/aT—(b—0)?

concave or convex at that point. ~(pi) t_ v the no" of th 7twherea, bandc ared,
The curvature also corresponds to the variation of the '¢SPECUVElY, the norm ot he VeClabsp; —q, PjP;j+q, an

t t direction with t to th | 5) =  Pi-dPita

fjlngen rec |on7W| respect o the arc-lengis) In [[7], the osculating circle is approximated by a di-

0'(s), wheref(s) = Z(T(s),(1,0)). o i . . :
rect least—square fitting of a circle, using an intermediate

Cholewsky decomposition for the optimisatidj.[

3 Previous and related works

Several methods have already been proposed for estimatMethods based on coordinate functions derivation. Fi-
ing the curvature at point;, most of them in the particular  nally, methods of the last group are based on the first and
case of digital spaces, i.e. curves extracted from im#jes[ second derivative estimation of the curve (see Equéijon
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Figure 3:Sampled curve with noise. Figure 4:Second-order weighted least square fitting.

In [6], the path method obtains the derivatives by a wherer; = (N2, my.:) is the noise corresponding to the

convolution with a derived Gaussian kernel. point p;. We shall assume that the random variabjes
_In[18), the derivatives are estimated as weighted local are independent and identically distributed (i.i.d.) with zero
differences among three points centereg;at mean and variance? (see Figur@). We aim to estimate

In [3], the derivatives are estimated by an imaginary /.y 2" andy/ from the samples, i.e., the first and second
multiplication in the frequency domain of a closed curve. order derivatives of atp;. To obtain those values we shall

This approach combines efficiently with a multi-scale anal- yse a weighted least squares (WLS) approach.
ysis by convoluting the curve with different Gaussian ker-

nels.

In [12], one coordinate of the curve is approximated 4-2 The weighted least squares approach
by a polynomial in the second coordinate through a least—First, we need an estimate for the arc—length Define
square fitting, and the derivatives are estimated by the co-Al;, as the length of the vectqs,py.1, wherek ranges
efficient of that polynomial. Our method also use least- from 1 to (m — 1). Since we have assumed thatis the
square fitting, but we approximate the curve with a rotated origin of the curve, the arc—length estimator frgmto p;
parabola, whereai] restricts the parabola to be parallel s defined asAlf = Z;’:, Alg, wheni > j, andAl{ =
to thex or y axis. More generally, our method fits each j—1 T

. . . — > i Al, wheni < j.

coordinate as a quadratic function of the arc—length, and In our approach we will restrict our calculus to a slid-

estimates the curvature by derivation of that function. ing window 0f2q + 1 points centered aroung: we will
only use the sample poinis;_,, ..., pj+, of P. We will

4 Theoretical framework now describe how to obtain the estimations of the deriva-

In this section, we describe our model and approach to solvetives z; andz’/, and the same solution is used to obtgjn

the problem of tangent line and curvature estimation. andy. ‘ 4
Considering the distinct abscissasg; , ..., Alj, at

4.1 Model and notations whichordinates:; _q—;, ..., T 14—, Yj—qg—Yj> - Yj+q—

. . . . , 3 y; are assigned. We will look for the quadratic functions.
Consider a piecewise-linear approximatl®ifaC* curve v o2

rinR% P = {p1,p2,....,pm}. We admit some noise in { z(s) = xj + 255 +1%“Lj s
the samples. In this theoretical analysis, we will assume y(s) =y +yjs+305s

that the curve is parameterized by arc—length, although the , ) i

samplesp; need not to be equally spaced. We will try to that bgtterflts these data in the weighted least /squaref sense
estimate the first and second derivatives of the coordinate(S€€ Figuré). In other words, we shall look far; andz
functionsz(s) andy(s). that minimize

; ; i ; j+q

Assuming thap, is the origin of the curve, i.er(0) = X . N2
p;, We can write: ’ o Ep(af,af) = ) wi (x — @y —aj Al — 5 (Nf)Q)
1=j—q

f//

and similarly fory” andy’”. The real numbers); are the
(0) +4'(0) s + 5 y"(0) s> + ga(s)s y 1oty Yj

weight of the poinp;. Such numbers are to be chosen pos-
with gi(s) — 0 whens — 0. Sincep; = (z1,y;) are itive, relatively large for smallAl/ | and relatively small for
K] . (2 1y J

samples of the curve associated to the value of arc—lengtHarges|Al;|. For example, we can consider weights of the

{ x(s) = 2(0) + 2/(0) s + L 2”(0) s> + g1(s)s>
=Y

Wheng > 1, the above WLS problems have a well-
@i = @)+ 2y 8+ 327 57+ g1(5i) 87+ N known solution[L9]. So we can write the following formu-
yi =y + Y si+ %y;' $7+ ga(si) 83+ my.i las for the derivatives aof:
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Figure 5:Least-square fitting defect can be compensated by rotation: we drew big errors by wide line, the scale being the
same on the three figures.

o = b of = = In other terms, the productsk, andd K should be small,
Y, = CQ*Z’;, y! = ah*ll;g. which corresponds to the intuition that the sampling must
! e ! o be denser in regions of high curvature. If not, some samples
a= zg;'?_ g w? (Al)? are too far fromp; to be correctly used in the estimate of
b= 3 Z{;‘Z_q w2 (AH)? the first derivatives of atp;.
e= 1 LI w2(al)
where : ¢ e = EZI';Cq w2 Al (z; — x;) 4.4 Convergence analysis: noisy curve
f= 5 Y wi (AL (2 — =) Let:
— j+q 2 A7J
9= Zg:j—q wi Al (yi — yj) . 2 .
; : Ty = (¢ Lt (A2 + 5 Swt (A)!) /(ac - 1?)?

h= 3 T, w (AN (- ). 0=\ Wi (AL G 2wl (AR)) /(ac = b7)

Observe that when the weights are symmetrical and the 't = Y S wi (AF)? +a? Y w) (Alf)4> /(ac —b%)?

samples are equally spaced arogyydhe termb vanishes.

The 4—connected digital curves are examples of such situ-In the particular case where the samples are symmetrically

ation. With those results, our curvature estimator is given distributed aroung; and the weights; are equal, we have

by: b=0andl'y' = a = §%¢, andl']! = ¢ ~ §*q, where we

i(p;) = eh— fg assumed that is big in the approximation.

VA 2 "

ac—b Proposition 2 (Convergence with noise)a) Assume that

02Ty < 7. Then the error of estimatiof); — a/(s;)| is

bounded by the sum of the errors of proposifiia) and a

In the following, we shall denote by the maximal dis-  random variable of zero mean and variance less than

tance between samples: — max{‘mgjw Aljﬂ‘}, (b) Assume thato?T'; < ~. Then the error of estima-
tion |2/ — 2" (s;)| is bounded by the sum of the errors of

and by K, and K; the maximum of the curvature and its " : .
derivative aroundp,: Ko — max{|x(s)|,|s| < 6} and propositionI(b) and a random variable of zero mean and
J S variance less than.

K, = max{|«/(s)|, |s| < &}, wherek(s) is the curvature
ofrats. Letp = (ac+ 110 S w? |Al{|3) / (ac —b?) In other words, the products’T’y, and o%I"; should

be small, which again corresponds to the intuition that the
number of point2q + 1 considered for the approximation
must increase with the noise. If not, the noise is too strong

Proposition 1 (Convergence without noise)a) If 6 Ko < for us to guarantee the estimation far;, /) and(z/, /).
€. Then the estimation error is bounded:

4.3 Convergence analysis: sampled curve without noise

)

andé(e) = Sins(/#.ln the technical reportli3], we give
precise proofs of the following results.

’x; —a/(s;)| < ¢ 15(95()8) '(s5) + 6755 5 Computational framework
(b) Suppose thatK, < e anddK; < e. Then: The method we introduced is extremely simple to imple-
- 6(e) ment. It has two variants we calldddependent coordi-
—02(e e . .
|l.;_/ —a"(s;)| < ¢ 7 2" (s;)+¢ 7 (1+2/(s;) Ko) natesandDependent coordmat(_eMoreo_ver, the numerlqal
(€) (€) results can be improved by a simptgation on the data, in



order to have the tangent direction close to the horizontal Thus, with those two equations we can use estimates for

(see Figur®&).

Our algorithm follows directly from the analysis of
Sectionl4 we compute the coefficient, b, ¢, e, f, g, and
h and solves the WLS method (see Algoritfn

Algorithm 1 Set Weighted Least Squares Variablgs (
1. Al[l]=a=b=c=e=f=g=h=0;

2. for i=1...2qdo

3 Al — AL+ [py—grio1pi—gsill
4: end for

5. m = Al[j] ;

6: for i=0...2qdo

7. Al[i] < Alli]- m; Il Centeringdl on j
8: w=weight(Al[i])?;

9 a—a+w (Ali])?;

100 beb+w (AIl])?;

11: c—c+w (Alli])?*;

122 e—e+w (Al]) (2j4i-z;);

13 f e frw (A (yey)

14 gegrw (A)? (vj4075);

15 hehtw (A2 (W40

16: end for

17 d = ac — b2 ; // determinant

51

This method computes the estimations 4y}, z/ and

y7. To do so we find the solution for the two WLS prob-
lem independently for: andy. The resulting tangent vec-
tor T = (z7,y;) is not constrained to be unitary, and the
vector (77, y) is not constrained to be orthogonal Ta

We normalize the normal vector estimate in the direction of
sign(r)(x},y7). The solution is then carried out by Algo-
rithm[2

Independent coordinates method

Algorithm 2 Independent coordinates WLS Solutigi (
1: call Set Weighted Least Squares Variablgs (

2: T, =(ce —bf)/d;
3: T, =(cg—bh)/d;
4: N, =(af —be)/d;
5: Ny = (ah — bg)/d ;
6: k=(eh— fg)/d;
7

: N =sign) (N/[IINJ]) ;

5.2 Dependent coordinates method

We observe that when the curve is parameterized by the

arc—length, we must have:
{ 2 +y? =1

! W01 ///:0

rr’" +yy

', andx’} to obtain estimates fay; andy;/, or vice-versa.
This selection depends whethdr,| < |T,|. The algo-
rithm[3solves the WLS problem for one coordinate, and de-
duces the estimations of the other coordinate. Algor[hm

Algorithm 3 Dependent coordinates WLS Solutigp) (
1: call Set Weighted Least Squares Variablgs (
T, =(ce —bf)/d;
T, = (cg —bh)/d;
if |T,|<|T,| then
Ty = Sign(ry) V (1 - T%) ;
N, =(af —be)/d;
N, =-(T,;N.)/T,;
else

T, = sign(T,),/(1 - T2);
N, = (ah - bg)/d;

N, =-(TyNy)/T; ;

- end if

: k=TyN, -TyN, ;

i N =-Ty; N, =T, ;

I/l Considering x(y)

I/l Considering y(x)

N
A wN PO

guarantees the geometrical properties of the tangent and the
normal vector, that isT is unitary and thalN is orthogonal

to T. The use of the above algorithm is well suited when
the curve is almost the graphic of a function in the axis:

y = f(z). The best axis is chosen at line 4 of Algorit@n
However, a simple rotation helps getting closer to that case.

5.3 Rotation

Least—square fitting works very well when the input points
are well distributed. However even on basic cases such as a
simple circle, the input points can be almost aligned verti-
cally. To avoid this situation, followindll?], we choose one

of thex or y axis as reference for the parameterisation (see
Sectior5.d). Even though, in the case (7], the parabola
degenerates to a line when the tangent direction igat
(see Figur&®). In thedependent coordinatesethod (not in
theindependenbne), the numerical precision is decreasing
with the angle. To compensate this numerical error, we can
compute first an estimation of the tangent with one of our
methods, and then use this tangent to better distribute the
samples. This operation is simply performed by a rotation
on the input points before the summation (before line 12 of
Algorithm[):

|:JJ1;—$]‘
Yi — Yj
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(a) Curve trace (b) Curve detail

Figure 6:Noisy spiral curve (1000 samples= 1).

5.4 Boundary conditions.

We introduced our algorithm for computing the curvature
at a pointp; with 2¢ + 1 samples centered at that point.
However, for points close to the boundary of a curve, this

5.0-6-0 0-0-0-0 8 D 0-0-0:0-0-0:0-0-0
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0.001 +a
: 2
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condition cannot be not verified. In that case we can eithergigure 7: Noiseless spiral with 2000 sample points

reduce the widthy of our sliding window, or simply com-

(w(Al) = 1) (legend on Figur(@).

pute the curvature using a non—centered window. In the last

case, we do not have the theoretical guarantees of S&kttion
the coefficient) of Propositiorill Nevertheless, our exper-
imental results remain coherent, although less precise.

6 Experimental results

We have implemented our method with four variants: the

the formula:
(/%(p]) - ’%m,ean) - (/‘L(Pg) - "{m.ean)
K(p;)

and considered the arithmetic mean of this relative error
along the curve.

RE(p;) =

independent and dependent coordinate method with or with-

out a rotation to make the tangent line close to horizontal.
In this section, we will discuss our results and we will com-
pare our performance to some important methods in the lit-
erature.

6.1 Experimental setting

We will discuss our tests using three curves:
e Circle: r(t) = (cos(t),sin(t)) : t € [0, 27];
e Ellipse:r(t) = (2cos(t),sin(t)) : t € [0, 27];

(1),

All of them were uniformly sampled in time, and therefore,
the samples were equally spaced for the circle, but not for

the ellipse and the spiral. The noise was simulated as a uni
form random variable in the disk of radius whereo is

2

e Spiral:r(t) = (W cos % sin(t)) : ¢ € [10, 50].

a proportion to the average distance between consecutive

samples (see Figul®. We considered the width of our
sliding window betweerl and 30. We have also experi-
mented the algorithm with weights given by the formula
presented in Sectidfi (see Figurd)..

Since we have the parametric formula for those exam-

6.2 Results

Our experimental results confirm the convergence analysis:
our methods improve when increasing the number of sam-
ples (inside the same time domain), i.e. when reducing the
average distancAl between consecutive samples(see Fig-
ure[d). In the noiseless caser = 0), we have observed
that, for all curves (not restricted to those 3) and methods
considered, the relative err@E increase withy (see Fig-
ure[?). This is not surprising, since the curvature estimation
should be better if we use points closer to the base point.
We observe that the behaviour of our method is similar to
the other ones, and that considering non—constant weights
can improve those results (see Fig8)e In the noisy case
we observed that the use of more sample points can im-
prove the estimates. The ideal number of pointepends

on the curve, on the sampling and @ifsee Figur@0). But

we observed that even if we take more points than the ideal
value, the relative error does not grow too much.

7 Conclusion

The curvature estimators that we have proposed performed
experimentally close to the best in the literature. They are
also robust with respect to noise and work in a great variety

ples, we computed the real curvature using automatic differ- of sampling conditions. Notice that our method does not
entiation {]. We have measured the relative error between only estimate the curvature, but also the tangent line, the
the unbiased estimated curvatdrand the real valué by normal vector, and the osculating circle (see FidlLile
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Figure 8:Noiseless ellipse with 100 sample poinis+ 5,
with various weightsw(Al) = exp(—BAI%)/Al*: the
parameteg is linked to the widthy of the sliding window,
which should be small in the noiseless case (see Section

43).

A very important advantage is that it can be immedi-

ately generalized for the estimation of curvature and torsion
of curves irR?. Other advantage of our method is that it can

be easily implemented. The program we used for compari-[13]

son is available al4].

We plan to generalize our method to the case of point

clouds in plane and also in space.
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Figure 9: Convergence when the sampling rate increases: (0, w(Al) = 1): Not all the methods we introduced in the
prior work converges whenl — 0, especially for irregularly sampled curves as (c).
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(c) Spiral:m = 2000, o = 0.5.
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(d) Circle:m = 200, o = 1.5. (e) Ellipse:m = 500, o = 1.5. (f) Spiral: m = 2000, o = 1.5.

Figure 10: Noise in the samples/(Al) = 1) (legend on Figur@(a): the circle fitting of [7] minimizes its error for a
specific value of; as specified in{], however the minimization sometimes degenerates ((a),(d)). The FFT-based method
of [3] is very robust to noise, although not being always optimal for laggeDur results are never far from the best ones,
although the best methods differ from case to case.

(a) Hypocycloid (b) Lissajous (c) Strofoid

Figure 11: Estimated curvatures (colour), tangent lines and normal vectors:({p)= (4 cos(t) — 2sin(2t),4sin(t) +
2cos(2t)) : t € [~2m, 2a]; (b) £(t) = (sin(2¢t),sin(3t)) : ¢ € [, 7); () r(t) = (L3t thd) 1t € [-2,2].
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