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Abstract

The Image Foresting Transform (IFT) has been proposed
for the design of image operators based on connectivity. The
IFT reduces image processing problems into a minimum-
cost path forest problem in a graph derived from the image.
It has been successfully used for image filtering, segmenta-
tion, and analysis. In this work, we propose a novel image
operator which solves segmentation by pruning trees of the
forest. First, an IFT is applied to create an optimum-path
forest whose roots are pixels selected inside a desired ob-
ject. In this forest, the background consists of a few subtrees
rooted at pixels on the object’s boundary. These boundary
pixels are identified and their subtrees are eliminated, such
that the remaining forest defines the object. The tree prun-
ing is an effective alternative to situations where image
segmentation methods based on competing seeds fail. We
present an interactive implementation of the tree-pruning
technique, show several examples and discuss some experi-
ments toward fully automatic segmentation.

1. Introduction

Image segmentation methods based on competing seeds
can be roughly described in three steps [1, 18, 14, 13, 15,
10]: (i) seed pixels are selected inside some objects, includ-
ing background (Figure 1a), (ii) each seed defines an influ-
ence zone which consists of the pixels that are “more closely
connected” to that seed than to any other, and (iii) each ob-
ject is defined by the union of the influence zones of its
internal seeds (Figure 1b). These methods present a leak-
ing problem due to the absence of boundary information—
a situation very common in practice. Leaking occurs when
the influence zones of the internal seeds invade the influ-
ence zones of the external seeds, and vice-versa, as illus-
trated in Figure 2 for the watershed transform [1, 18]. Note
that the identification of the leaking parts along the object
boundary can be used to solve the segmentation problem.

(a) (b)

Figure 1. Image segmentation by watershed
transform. (a) An MR image of the brain with
seed pixels selected inside the caudate nu-
cleus (1), lateral ventricle (2), and background
(3). (b) Object boundaries in the resulting
segmentation.

In this work, we propose an alternative approach using
the Image Foresting Transform (IFT)— a general tool for
the design, implementation, and evaluation of image pro-
cessing operators based on connectivity [3]. In the IFT, an
image is interpreted as a graph whose nodes are image pix-
els and whose arcs are defined by an adjacency relation
between pixels. For a given set of seed pixels inside a de-
sired object, we define a suitable path-cost function and the
IFT computes a minimum-cost path forest in the graph. The
roots of the forest are drawn from the seed set, such that
each tree consists of the pixels more closely connected to
its root than to any other seed. The choice of the path-cost
function intends to connect object and background by a few
optimum paths which cross the object’s boundary through
its “weaker” parts (called leaking pixels). The topology of
the forest is used to identify the leaking pixels and eliminate
their subtrees, such that the remaining forest defines the ob-
ject. The method can also be applied to multiple-object seg-
mentation with seeds selected inside each object, excluding
the background.

The applications of the IFT include watershed transfor-



mations [11, 5, 12, 2], fuzzy-connected segmentation [2],
multiscale skeletonization [4], optimal boundary track-
ing [3, 7, 6], shape analysis using contour saliences and
multiscale fractal dimension [16], morphological recon-
structions [5, 3], geodesic path computation [3] and distance
transforms [4]. This is the first time that the topology of the
optimum-path forest computed by the IFT is exploited for
region-based image segmentation.

(a) (b)

Figure 2. Leaking in image segmentation us-
ing watershed transform: (a) An image of
peppers with seed pixels selected inside (1)
and outside (2) the one at the top. (b) Result-
ing segmentation, where the errors are indi-
cated by arrows.

Section 2 presents the tree-pruning approach for im-
age segmentation. In Section 3, we describe its interactive
implementation. Experimental results involving interactive
and automatic image segmentations are presented in Sec-
tion 4. We state our conclusions and discuss future work in
Section 5.

2. Tree-pruning segmentation

We start from a rationale similar to that of the watershed
transform [1, 18, 11]. Consider the flooding process over the
topographic surface of a gradient-like image (e.g. the mag-
nitude of the Sobel’s gradient [9]), with seed pixels selected
only inside a desired object, and one source of water at the
location of each seed. Instead of erecting barriers wherever
two bodies of water coming from distinct sources meet, let
the water leak to the background through the lower pixels
on the object’s boundary. In practice, boundaries do not usu-
ally have the same height and these leaking pixels are not so
many. That is, the streams of water reaching the background
usually pass through a few leaking pixels. The identification
of the leaking pixels allows to erect a barrier at their loca-
tion, separating the water inside and outside the object. This

process can be easily implemented using the Image Forest-
ing Transform (IFT) [3].

The IFT computes a minimum-cost path forest in a graph
whose nodes are image pixels and whose arcs are defined
by an adjacency relation between pixels. We are interested
here in simple connectivity relations, such as 4- and 8-
neighborhood. A path π = 〈p1, p2, . . . , pn〉 in the graph
is a sequence of distinct and adjacent pixels (pi, pi+1),
i = 1, 2, . . . , n − 1. The cost of a path is determined by an
application-specific path-cost function, which usually de-
pends on local image properties along the path, such as
brightness, gradient, and pixel position. For example, fpeak
is a suitable function to simulate the aforementioned flood-
ing process.

fpeak(π) = max
i=1,2,...,n

{G(pi)}, (1)

whereG(pi) is the height value of the pixel pi in a gradient-
like image. The IFT assigns one minimum-cost path from
the seed set to each pixel, in such a way that the union of
those paths is an oriented forest, spanning the whole image.
That is, each root of the forest defines an influence zone
consisting of the pixels that are more closely connected to it
than to any other seed. Paths of the same minimum cost can
be resolved by some tie-breaking policy. Two tie-breaking
policies are discussed in [3]. We are interested in the first-
in-first-out (FIFO) policy that assigns any ambiguous pixel
to the tree rooted at the first most closely connected seed
to reach it. There are three important attributes assigned to
each pixel in the forest: its predecessor in the optimum path,
the cost of that path, and the corresponding root. The prede-
cessor map represents the optimum-path forest, where trees
can be pruned by turning one or more of their nodes (except
the root) into single-rooted trees. We are interested in prun-
ing trees at the leaking pixels, such that the remaining forest
provides the object of interest.

Figure 3a shows, as an example, the graph of a gradient-
like image G with 4-connected relation and one seed pixel
(bigger dot) inside an object represented by the central
basins. The resulting optimum-path forest for fpeak is
shown in Figure 3b together with the optimum cost of each
path. By counting the number of pixels in the subtrees
rooted at each pixel of the predecessor map (number of de-
scendants), we can observe in general that (Figure 3c): (i)
optimum paths that reach the background have pixels with
a higher number of descendants, (ii) the number of descen-
dants decreases considerably (from 84 to 31 and 51) when
these optimum paths leave the object, and (iii) the leaking
pixels (such as the one with 84 descendants) are the last pix-
els before this fall. The segmentation can be solved by prun-
ing the subtrees of the leaking pixels (Figure 3d), and prop-
erties (i)-(iii) are important for automatic image segmenta-
tion (Section 4).
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Figure 3. Segmentation by tree pruning. (a) A
4-connected graph representation of an im-
age G with one seed pixel (bigger dot) in-
side the object. (b) An optimum-path forest
for fpeak, with minimum path costs shown.
(c) The number of descendants of each pixel
in the forest. (d) Segmentation obtained by
pruning the subtree of the pixel with 84 de-
scendants. The numbers indicate object la-
bels assigned to each pixel (0 for the back-
ground, 1 for the object).

More generally, we can use any path-cost function which
takes into account the local dissimilarities between adja-
cent pixels, and perhaps, the dissimilarities between the ob-
ject (as represented by the seed set) and each pixel. The
whole idea is to measure a “strength of connectedness”
between object and background, and disconnect them by
breaking their weaker links which are expected to be across
the boundary. A similar interpretation for object definition
was proposed in [17]. Their method can be efficiently im-
plemented by an IFT, where the strength of connectedness
between a seed and a pixel is defined as the inverse of the
cost of an optimum path from that seed to that pixel. The ob-
ject is obtained by thresholding the cost map. A failure oc-
curs when there are optimum paths reaching internal and
external pixels with the same cost. The tree-pruning ap-
proach relies on another property rather than on the cost
of the paths. It assumes that the optimum paths of interest,

which reach internal pixels, do not pass through the back-
ground.

3. An interactive implementation

The tree-pruning approach essentially reduces the seg-
mentation problem to the identification of seed and leaking
pixels. The simplest alternative is to provide their identifica-
tion in an interactive way. One can figure out user assistance
in various different ways. We present an interactive imple-
mentation of the method which works as follows.

For a desired object with one or more internal seeds se-
lected by the user, the program computes the IFT for the
path-cost function fpeak (Equation 1), counts the number of
descendants for each pixel, and displays the brightness of
the original image with a colored overlay— where the color
intensity of each pixel is proportional to the number of its
descendants (Figure 4a). (Figure 4b shows the gradient-like
image G used in Equation 1.) Since the color intensities of
the optimum paths that reach the background are higher in-
side the object, the leaking pixels can be visually identi-
fied when these intensities are reduced across the object’s
boundary. The user can move the mouse over the image and
the program simulates (with no noticeable delay) the prun-
ing of each subsequent subtree, whose root is the pixel at
the current position of the cursor (Figure 4c). Once a prun-
ing point properly identifies a leaking pixel, the user can
click on it to commit that pruning operation (Figure 4d).
The user can make as many prunings as necessary to com-
plete the segmentation process (Figures 4e-f).

4. Results and discussion

We observe that the background is usually more
strongly connected to the object through a few leak-
ing paths. The object can be completely disconnected from
the background by breaking these paths at those leak-
ing pixels. The method usually works even when the
boundary contains long weakly defined segments (Fig-
ure 5).

Although the size of the trees is reduced with the increase
of roots in the forest, the interactive approach still works
in multiple object segmentation tasks (Figures 6 and 7). In
this case, however, a same color is assigned to all seeds in
a same object and the color of each object is propagated
to the trees rooted at its seed pixels during the IFT. Note
that, some objects (e.g. the ventricle1 in Figure 6 and the
squashes B and D in Figure 7) may be completely defined
by simple seed selection and without any identification of
leaking pixels. That is, the seed competition among distinct

1 The dark object at the center of the image.



(a) (b)

(c) (d)

(e) (f)

Figure 4. Interactive tree-pruning segmenta-
tion. (a) Image with the number of descen-
dants of each pixel, after selection of two
seeds indicated by arrows. (b) Gradient-like
image G used in Equation 1. (c) Possible re-
sult of pruning for the current position of the
cursor. (d-f) Results of committed prunings.

objects reduces the number of leaking pixels (i.e. user in-
volvement). In theory, the leaking pixels should be com-
pletely eliminated with seeds in the background, in which
case the method would be a watershed transform. However,
this does not occur in several situations (e.g. Figure 2). In
fact, it is not difficult to find examples such as that, where
the tree-pruning approach is simpler and more effective than
region growing methods based on competing seeds (Fig-
ure 8).

Note that an entire segmentation process consists of two
tasks [8]: recognition and delineation. Recognition consists
of roughly determining “where” the object is and distin-
guishing it from other object-like entities. Delineation con-
sists of precisely defining the spatial extent of the object

(a) (b)

(c) (d)

Figure 5. Tree-pruning segmentation of
weakly defined boundaries. (a) Close-up of a
vein in an MR image of the wrist. (b) Image
with the number of descendants showing one
seed (indicated by the arrow) selected inside
the vein. (c) Pruning simulation for the point
indicated by the arrow. (d) Result of segmen-
tation.

(a) (b)

Figure 6. Multiple object segmentation by
tree pruning. (a) An MR image of the brain
with the number of descendants, after selec-
tion of one seed in the lateral ventricle and
one seed in the caudate nucleus. (b) Result
of two prunings indicated by arrows.

region in the image. Human operator (application experts)
usually outperform computer algorithms in most recogni-



(a) (b)

(c) (d)

Figure 7. Multiple object segmentation by
tree pruning. (a) An image of a basket with
squashes. (b) Image with the number of
descendants, after seed selection for each
squash. (c) Result of a few prunings indi-
cated by arrows. (d) Resulting segmentation.

(a) (b)

Figure 8. Tree pruning outperforming the wa-
tershed transform for the example shown in
Figure 2. (a) An image of peppers with the
number of descendants, after seed selection
for the one at the top and two prunings (in-
dicated by arrows). (b) Resulting segmenta-
tion.

tion tasks, and the other way around can be verified in delin-
eation tasks. In the interactive tree-pruning approach, recog-

nition is performed by the user, when the user selects seed
and leaking pixels and verifies the pruning results, while de-
lineation is automatically performed by the IFT algorithm.
This strategy has been shown to be very effective in exploit-
ing the synergy between human operator and computer al-
gorithms during interactive segmentation [2, 7, 6, 8].

The inability to translate relevant global object-related
knowledge needed for recognition to computable local op-
erations has been one of the major obstacles to automatic
segmentation. We believe that it is possible to make seed se-
lection, tree pruning and verification automatically, in some
specific applications. Some knowledge about local image
properties of the object can be used to estimate seed pix-
els, and automatic verification can be performed by match-
ing between global properties of the object and each pos-
sible remaining forest, considering several pruning simula-
tions. The properties of the forest described in Section 2 can
be exploited to identify the pruning points. Figure 9a illus-
trates, as an example, an image after seed selection show-
ing only the number of descendants greather than 10% of
the total number of pixels in the image. Observe that this
correctly isolates the leaking path and some of its branches
outside the object. Due to the FIFO policy, the leaking path
splits into several branches at a leaking pixel such that the
number of its descendants is the sum of the number of pixels
along these branches. Therefore, we can expect abrupt vari-
ations in the number of descendants along the leaking path.
These variations can be observed for one of the branches
in Figure 9c— the number of descendants along the path is
plotted following the predecessor pixels from the end to the
beginning (root pixel) of the path. In fact, they are better de-
tected as zero-crossing transitions of the second derivative
of the curve (Figure 9d), where the most significant one oc-
curs at the leaking pixel. When we prune the subtree rooted
at this leaking pixel, the remaining tree defines the object
(Figure 9b). The same process must be applied to each leak-
ing path in the case of multiple leaking pixels.

Figure 10 illustrates another example of automatic prun-
ing for the detection of license plates, with the same strat-
egy used in the example of Figure 9. The segmentation of
the plates is a crucial step to the posterior analysis of its con-
tent. Note that the automatic tree pruning seems to be feasi-
ble for any internal seed location, and it occurs at the same
points (Figure 11).

5. Conclusions and future work

We introduced a new image operator based on the IFT
and its application to image segmentation. We presented an
interactive implementation of the method and several results
using grayscale and colored input images. In both cases, the
IFT of a gradient-like image is computed and the bright-
ness of the original image is displayed with the number of
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Figure 9. Example of segmentation with au-
tomatic pruning selection of the Callossum
in an MR image of the brain. (a) The 10%-
threshold path (gray lines) and the prun-
ing point detected automatically (indicated
by the arrow). (b) Resulting segmentation
by tree pruning at the automatically-detected
pruning point. (c) A plot of the number of de-
scendants along one of the considered 10%-
threshold paths. (d) The second derivative of
(c), used to select the most likely points for
pruning.

descendants of each pixel in the forest. We discussed inter-
active and automatic approaches of pruning based on such
information. The results indicate that tree pruning is a very
promissing technique, being efficient and effective in many
practical situations; That is, the number of seeds and prun-
ing points are usually not prohibitive. This minimizes user
interventions in interactive segmentation and favors auto-

Figure 10. License plate segmentation by tree
pruning. One seed is selected inside each
plate, and the first pruning point detected
automatically (indicated by the arrows) seg-
ments the plate.

matic object definition in specific applications.

We are currently investigating procedures to identify
leaking and seed pixels, extending the tree-pruning ap-
proach to multidimensional segmentation, and evaluating
the method in some real applications.
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Figure 11. Segmentation of the same license
plate with different seed locations: the auto-
matically detected leaking point (indicated by
the arrows) is always the same, since it is the
stronger connection between the object and
the background.
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