
A Backmapping Approach for Graph-based Object Tracking

Thiago Meireles Paixão Ana Beatriz V. Graciano Roberto M. Cesar Jr.
Roberto Hirata Jr.

Institute of Mathematics and Statistics - University of São Paulo
Rua do Matão, 1010, 05508-090, São Paulo, Brazil
{thiagopx,abgv,cesar,hirata}@ime.usp.br

Abstract

Model-based methods play a central role to solve differ-
ent problems in computer vision. A particular important
class of such methods rely on graph models where an object
is decomposed into a number of parts, each one being rep-
resented by a graph vertex. A graph model-based tracking
algorithm has been recently introduced in which a model is
generated for a given frame (reference frame) and used to
track a target object in the subsequent ones. Because the
view of an object changes along the video sequence, the so-
lution updated the model using affine transformations. This
paper proposes a different approach and improves the pre-
vious one in several ways. Firstly, instead of updating the
model, each analyzed frame is backmapped to the model
space, thus providing more robustness to the method be-
cause model parameters do not have to be modified. A dif-
ferent method for model generation based on user traces
has also been implemented and used. This model genera-
tion approach is much simpler and user-friendly. Finally, a
graph-matching algorithm that has been recently proposed
is used for object tracking. This new algorithm is more ef-
ficient and leads to better matching results. Experimental
results using synthetic and real sequences from the CAVIAR
project are shown and discussed.

1 Introduction

Structural pattern recognition is based on the concept
that each pattern is composed by a certain number of parts
and the relations between them. For instance, a house may
be decomposed as a roof on top of walls. A wall may have
a door in it, which in its turn has a window beside it. The
house parts are: roof, walls, door and window. The rela-
tions are on top, in, beside. There has been intense research
on structural pattern recognition methods, particularly for
computer vision applications [1, 4]. The present paper ad-
dresses the problem of tracking an object in a video se-

quence while recognizing its parts in each frame. A struc-
tural pattern recognition approach based on inexact graph
matching is adopted.

There is a large literature on parts detection and recog-
nition using graphs [3, 5]. The method discussed herein is
based on a recent object tracking scheme [6] which, in turn,
derives from the inexact matching method described in [2].
In this approach, the object of interest is decomposed into
parts and represented as a graph. Each part of the model
is associated to a graph vertex. Spatial relations are mea-
sured from the parts of the image and represented as graph
edges linking the corresponding vertices. A similar graph is
extracted from the image where the object parts should be
segmented and recognized. These tasks are carried out by
matching the vertices from the model to the input graph.

The present paper starts from the method described in [6]
and improves it in a number of different ways. The track-
ing and recognition results are better and obtained in a
much more efficient way. Model generation is carried out
from imprecise traces made by a user through a specially-
designed GUI. The model update strategy has been replaced
by a model-space oriented concept: the frame to be rec-
ognized is backmapped to the model space, which leads
to more robust results since the model parameters do not
have to be re-estimated for each frame. A new matching
algorithm, recently introduced in [7] for static image seg-
mentation, has been adapted and employed, leading to bet-
ter and faster results. Finally, different pre-processing steps
based on motion estimation and connected component anal-
ysis have been created. These aspects constitute the main
original contributions of the present paper.

This paper is organized as follows. Section 2 reviews the
main concepts of the approach, thus providing an overview
of the method. The main contributions of the current paper
are presented in Section 3, which is followed by the ex-
perimental results in Section 4. The paper is concluded in
Section 5.

2 Graph-based methodology overview

This section reviews the mathematical modeling used
in [6] for object tracking. The basic idea behind the method
is to identify the target object in a given frame (reference
frame) and then to track it by recognizing and mapping its
parts in the subsequent frames. Therefore, object identi-
fication in the reference frame is equivalent to identifying
its parts. This task may be carried out interactively (user-
oriented) or by means of automatic detection procedures
(e.g. face detection methods for face tracking and recog-
nition applications). This step is known as model genera-
tion and is addressed in Section 3.1. Both object model and
subsequent frames are similarly represented by attributed
relational graphs (ARG) [9]. An ARG is actually a graph in
which attribute vectors are assigned to vertices and to edges.
Such vectors are responsible for adding relevant problem
information to a graph data structure, since they hold sym-
bolic properties and features related to the nodes and edges
they are assigned to. We will henceforth refer to the model
graph simply as model. On the other hand, the input graph
is associated to the target frame where the object of inter-
est should be tracked / recognized. Figure 1 provides an
overview of the method. A model Gm is generated in the
reference frame (F0). Subsequent frames F1, F2, . . . , Fn

are analyzed so that input graphs G1
i , G

2
i , . . . , G

n
i are also

generated. Model and input graphs are matched, thus result-
ing in the tracked objects with recognized parts (indicated
as Ri in the figure).

Figure 1. Overview of tracking process.

More formally, an ARG is a graph with feature vec-
tors defined by a tuple G = (V,E, µ, ν), where V de-

notes the vertices and E the edges. V is associated to ob-
ject parts, whereas edges represent spatial relations between
them. ∀v ∈ V , there is an associated object attribute vector
µ : V → Rp. Analogously, ∀e ∈ E, there is an associated
relational attribute vector ν : E → Rq . The values p and
q indicate the number of vertex and edge attributes, respec-
tively. Adjacency graphs [8] have been used to define the
graph topology.

Let G = (V,E, µ, ν) be an ARG, v, w ∈ V be two ver-
tices and a = (v, w) ∈ E and a′ = (w, v) ∈ E be two
edges. The object attribute vector µ(v) is defined as:

µ(v) = (RGB(v), c(v)). (1)

The term RGB(v) is a tuple (r(v), g(v), b(v)) of the
normalized average RGB-levels of the image region asso-
ciated to vertex v, whereas c(v) indicates the centroid co-
ordinates of the region. The relational attribute vector is
defined as:

ν(v, w) = (−→v), with −→v =
−−−−−−−−−→
(c(w)− c(v))

dmax
. (2)

where dmax is the maximum distance between two points
in the image.

The input ARG Gi is generated from the watershed par-
tition [10] of an input frame. Each watershed region is asso-
ciated to an input ARG vertex and its object attributes vector
is calculated from the corresponding watershed region (i.e.
average RGB tuple and centroid). The watershed partition
also helps to define the ARG topology, which is created as
an adjacency graph based on the watershed basins neighbor-
hood. It is also necessary to calculate the model Gm, which
is explained in Section 3.1.

A solution to the tracking/recognition problem is a map-
ping from Vi to Vm [6]. Because |Vi| is usually much larger
than |Vm|, a suitable homomorphism between Gi and Gm

should map distinct vertices of Gi onto a single vertex of
Gm, which corresponds to merging coherent input regions.
An association graph G̃A betweenGi andGm is defined as
the complete graph G̃A = (VA, EA), where VA = Vi × Vm

and EA = Ei × Em. Thus, G̃A is a graph representa-
tion of all possible mappings from Gi to Gm. Particu-
larly, homomorphisms between Gi and Gm are a family
of such possible mappings. A graph homomorphism h be-
tween Gi and Gm is a mapping h : Vi → Vm such that
∀a1 ∈ Vi,∀b1 ∈ Vi, (a1, b1) ∈ E ⇒ (h(a1), h(b1)) ∈ Em.
This definition assumes that all vertices in Gi should be
mapped to Gm.

As proposed in [2], a solution for finding a homomor-
phism between Gi and Gm may be defined as a complete
subgraph G̃S = (VS , ES) from the association graph G̃A,
in which VS = {(a1, a2), a1 ∈ Vi, a2 ∈ Vm} such that
∀a1 ∈ Vi,∃a2 ∈ Vm, (a1, a2) ∈ VS , and ∀(a1, a2) ∈

VS ,∀(a1
′, a2

′) ∈ VS , a1 = a1
′ ⇒ a2 = a2

′, assuring that
each vertex from the input ARG corresponds to exactly one
vertex of the model ARG and |VS | = |Vi|. Such a solution
only considers the structures of Gi and Gm, giving rise to
many possible homomorphisms between both graphs. In or-
der to find a suitable solution, a cost function is defined, so
that the search may be expressed as an optimization prob-
lem.

Consider again Gi and Gm, as well as vertices a1, b1 ∈
Vi, a2, b2 ∈ Vm and edges e1 ∈ Ei, and e2 ∈ Em. Let
G̃S be a suitable subgraph of the association graph G̃A that
represents a valid solution. The adopted cost function is
defined as:

f(G̃S) =
α

|VS |
∑

(a1,a2)∈VS

cV (a1, a2)+
(1− α)
|ES |

∑
e∈ES

cE(e).

(3)
f is a weighted sum of object (cV) and structural (cE)

properties. The cost functions cV and cE , defined in [7]
and adopted in this paper, consist of dissimilarity measures
between vertices and edges, respectively. Thus, compatible
pairs of vertices or edges present small dissimilarity value
and contribute to minimizing f .

3 Proposed approach

This section presents the improved methodology to ob-
ject tracking using graph matching. We first present the new
tool for model generation, and the strategy to facilitate the
segmentation algorithm. We propose a way to approximate
the object for detection and then a new paradigm that maps
the input graph back to the model space.

3.1 Model generation

The model is an ARG that represents object parts and
background of an object neighborhood. In Section 2, we
described the ARG generation process. Model generation
is a particular case of ARG generation. In [7], the model
generation process is presented to segment static images.
We adapted this procedure by introducing background la-
beling, which is fundamental for object tracking. Basically,
a model is generated by an interactive process in which the
user makes some traces associating object parts to specific
labels. If a labeled trace intersects a watershed region, a cor-
respondent new labeled vertex is added to the ARG. Figure
2 depicts this step.

A specific tool including a GUI (Figure 3) to con-
trol this process has been developed using the platform
C++/GTKmm 1. This tool is integrated with Intel OpenCV

1http://www.gtkmm.org

(a) (b) (c)

(d) (e) (f)

Figure 2. Model generation steps: (a) refer-
ence frame; (b) region of interest; (c) user-
defined traces; (d) watershed partition; (e)
intersection of watershed regions with user-
defined traces; (f) model superposed to orig-
inal image.

library 2, which implements the tracking methodology.

(a)

(b)

Figure 3. Model generator: (a) ROI and traces
defined by user; (b) resulting model.

2http://sourceforge.net/projects/opencvlibrary

3.2 Pre-processing

Yilmaz et al. [11] list four ways to detect objects: point
detectors, background subtraction, segmentation and super-
vised learning methods. We based our method in a restricted
area of segmentation, i.e. segmentation is performed inside
a region of interest (ROI) for the sake of computational sav-
ings and object segmentation quality. The pre-processing
step aims at obtaining a dilated object silhouette as a ROI
and control points to calculate object motion.

Initially, the user defines a rectangular ROI, which may
not represent the object shape properly. Therefore, we com-
pute an input ARG from the original ROI and segment this
region by matching against the model. The result includes
classified object parts as well as the classified background
region. The object silhouette is the union of object parts
whereas the strategic control points are the centroids of
parts. This process is illustrated in Figure 4.

(a) (b) (c)

(d) (e) (f)

Figure 4. Pre-processing steps: (a) model su-
perposed to rectangular ROI; (b) input graph
computed inside a rectangular ROI; (c) seg-
mentation; (d) centroids of object parts for
motion estimation purposes; (e) object sil-
houette; (f) dilated object silhouette.

3.3 Approximate object detection

Before the final object detection through model-based
segmentation, we have proposed an approximate object de-
tection pre-stage to simplify the input graph extraction and
the graph-matching computing. We estimate an affine trans-
form Ti that maps an object of an input frame i onto the
object in reference frame. T−1

i denotes the inverse of Ti.
Let S be a binary image of the dilated object silhouette ob-
tained in the pre-processing step. Therefore, T−1

i (S) de-
notes the region of interest of the input frame i. In fact,

the transformation Ti can only be estimated after segmen-
tation of frame i because the segmentation provides control
points that match those in pre-processing step. These con-
trol points allow us to calculate a proper affine transforma-
tion (see Section 3.4).

We used a dilated version of the silhouette because even
if Ti is not accurate, T−1

i (S) still will include the whole ob-
ject. At this point, we emphasize that the object is not fully
detected, because the region may include non-object parts
that need to be classified. Ti(S) plays the role of a mask for
input graph generation in order to save computational pro-
cessing. It helps to eliminate other moving objects that may
lie on any part of the scene.

Figure 5. Approximate object detection. In
the first row, the transformation T maps the
object of input frame i onto the object of the
reference frame. In the second row, we use
T−1 to map the dilated object silhouette onto
the approximate dilated silhouette of input
frame i+ 1.

3.4 Backmapping

The key idea behind our tracking methodology is to
backmap an object onto the reference frame for segmen-
tation. In this work, backmapping is defined as the task
of estimating an affine transformation that maps an input
graph back to the model space. This procedure and the seg-
mentation step are strongly interdependent. During the sec-
ond input frame processing, the respective input graph is
not classified and is slightly misaligned with respect to the
model. Thus, the segmentation step precedes the backmap-
ping. After segmentation, the backmapping is estimated
and applied to the input graph of the next frame. A well-
performed backmapping depends on a well-performed seg-
mentation and vice versa.

This approach differs from the original method which is
based on model update, i.e. the model is mapped onto the

object of the current frame, whereas our approach holds the
model fixed in order to prevent accumulation of errors in
backmapping estimation and therefore model degeneration.
Figure 6 confronts other two approaches.

(a) Original approach.

(b) New approach.

Figure 6. Original x new approach. In the
original approach the model suffers sequen-
tial transformations that may degenerate the
model. In the new approach the model is
fixed and input graph is backmapped.

We assume that an object part is a connected component.
After the segmentation step, we filter the resulting image
of selecting the largest connected component for each part
(Figure 7).

(a) (b)

Figure 7. Connected components heuristic:
(a) raw segmentation; (b) segmentation after
connected component filtering.

The last step is to estimate the backmapping affine trans-

formation. We take the centroids of each classified object
part and we build a linear system to recover the transfor-
mation matrix. The affine transformation is given by six
parameters, so the segmented input frame, and also the ref-
erence frame, must present at least three object parts.

4 Experimental results

The algorithms have been implemented using C++ and
Intel OpenCV library. The timings reported here refer to
a Celeron machine (1.73GHz) with 1GB of RAM. The
dataset has three MPEG sequences (320×240 pixels/frame)
and frame rate of 30fps. Segmentation was performed with
α = 0.4 (weight for vertex cost, see Section 2) and δ = 0.6
(weight for modulus edge cost [7]). Results present tracked
sets with recognized parts and approximate object detec-
tion. The time consumption for the three cases is about
10 seconds for model generation, 13 seconds for the pre-
processing step and 20 seconds per processed frame.

In the first sequence, a boy performs a translation from
left to right of scene. The boy’s body, skate board and some
background have been labeled according to the Figure 8(a).
The result (Figure 9) shows 5 sequence frames sampled in
5-spaced intervals, from a total of 36 frames. We achieved
a good visual performance in this sequence, with just very
small variations along the frames due to excessive blur and
low resolution image.

The second sequence is from a rotation of a doll. The
doll’s body and a background region have been marked ac-
cording to Figure 8(b). In this case, the watershed gives rise
to only one background region. This is a problem because
the whole background is represented by just a single vertex.
If that vertex is misclassified, all the background is misclas-
sified. Thus, new vertices are generated around object by
splitting of background into a p×q-square grid (p = q = 25
pixels in this sequence). The result (Figure 10) shows 5 se-
quence frames sampled in five 15-spaced intervals, from a
total of 60 frames (rotation of 60 degrees). In column 4 of
Figure 10(b), the doll’s right arm (reference of the reader)
was misclassified as background due to a post-processing
filter. If on the one hand this post-processing helps to main-
tain a good visual performance, on the other, objects may
disappear if they disconnect from the main part. In the next
frame, the tracking algorithm recovers from the mistake.

The third sequence is from the CAVIAR project 3. There
are three people walking from top to bottom of the image
causing a zoom effect. We modeled the three people as a
unique object (Figure 8(c) depicts object and background
modeling). This sequence includes challenging elements
such as other moving people, shadows, heterogeneous back-
ground and poor object resolution in reference frame. Fig-

3EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

ure 11 shows some results. Our approximate object detec-
tion strategy eliminates non-target objects. In some frames,
dark strips of the floor was merged to dark pants of the three
targets, a limitation due to the way that the watershed algo-
rithm is being used. The advantage of structural approach
is that artifacts, like other people walking on scene, do not
introduce errors in the tracking if they are not very close to
the tracked object. On the fourth column of the second row,
approximate object detection estimates a rotation that does
not occur in video sequence. The cause is the loss of few
object parts, therefore a bad estimation of motion control
points (object parts centroids). Common effects of bad esti-
mation is rotation and, in some cases (depending on object
symmetry), scaling.

(a) (b) (c)

Figure 8. Regions of interest and traces for
three video sequences.

5 Concluding remarks

Recent advances on video analysis show that Structural
Pattern Recognition may be a promising way to approach
the object tracking problem. A previous work models the
objects to be tracked as a graph with attributes and, for each
frame, the model is updated using affine transforms. In this
paper, we proposed a new paradigm where the model is
not updated for the subsequent frames but it is the object
that is backmapped to the original model, simplifying the
algorithm. The graph-matching algorithm involved in this
process has also been changed to the one presented in [7].
In relation to the previous one, this one has decreased
the runtime complexity from O(|Vg||Vi|) to O(|Vg| ∗ |Vi|),
drastically dropping the amount of time taken to process
a given video. In practice, when tested4 against the goose
sequence [6], it has taken 5 minutes (in comparison to 78
minutes from the previous work), with visually similar
results. Finally, the initial model generation is done now
with a user-friendly interface. The approach has been
implemented, tested (to certify against implementation
mistakes) and experimented in some video sequences,
three of them were reported in this work (one of them

4experiment available on www.vision.ime.usp.br/ thiagopx/sibgrapi/

is a surveillance video used to test motion segmentation
algorithms). The results are very promising and show sig-
nificant improvements in relation to the previous approach.

Acknowledgements.
The authors are grateful to FAPESP, CNPq and CAPES

for partial (Roberto M. Cesar Jr. and Roberto Hirata Jr.)
and full financial support (Thiago M. Paixão and Ana B. V.
Graciano).

References

[1] H. Bunke. Recent developments in graph matching. In
ICPR, pages 2117–2124, 2000.

[2] R. Cesar-Jr, E. Bengoetxea, P. Larranaga, and I. Bloch. Inex-
act graph matching for model-based recognition: Evaluation
and comparison of optimization algorithms. Pattern Recog-
nition, 38(11):2099–2113, November 2005.

[3] Y. Chen, L. Zhu, C. Lin, A. Yuille, and H. Zhang. Rapid
inference on a novel and/or graph for object detection, seg-
mentation and parsing. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Pro-
cessing Systems 20, pages 289–296. MIT Press, Cambridge,
MA, 2008.

[4] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty
years of graph matching in pattern recognition. IJPRAI,
18(3):265–298, 2004.

[5] P. F. Felzenszwalb and J. D. Schwartz. Hierarchical match-
ing of deformable shapes. In CVPR. IEEE Computer Soci-
ety, 2007.

[6] A. B. V. Graciano, R. M. Cesar-Jr., and I. Bloch. Graph-
based object tracking using structural pattern recognition. In
SIBGRAPI ’07: Proceedings of the XX Brazilian Symposium
on Computer Graphics and Image Processing, pages 179–
186, Washington, DC, USA, 2007. IEEE Computer Society.

[7] A. Noma, A. B. V. Graciano, L. A. Consularo, R. M. Cesar-
Jr, and I. Bloch. A new algorithm for interactive structural
image segmentation. 2008.

[8] T. Pavlidis. Algorithms for shape analysis of contours and
waveforms. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-2(4):301–312, 1980.

[9] R. J. Schalkoff. Pattern recognition: statistical, structural
and neural approaches. John Wiley & Sons, Inc., New York,
NY, USA, 1991.

[10] L. Vincent and P. Soille. Watersheds in digital spaces: An
efficient algorithm based on immersion simulations. IEEE
Transactions on Pattern Analysis and Machine Intelligence.,
13(6):583–598, 1991.

[11] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. ACM Comput. Surv., 38(4):13, 2006.

Figure 9. Results of the first experiment.

Figure 10. Results of the second experiment.

Figure 11. Results of the third experiment.

