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Abstract

A gray-level image can be interpreted as a topographi-

cal surface, and represented by a component tree, based on

the inclusion relation of connected components obtained by

threshold decomposition. Relations between plateaus, val-

leys or mountains of this relief are useful in computer vision

systems. An important definition to characterize the topo-

graphical surface is the dynamics, introduced by Grimaud

(1992), associated to each regional minimum. This concept

has been extended, by Vachier and Meyer (1995), by the def-

inition of extinction values associated to each extremum of

the image. This paper proposes four new extinction values

– two based on the topology of the component tree: (i) num-

ber of descendants and (ii) sub-tree height; and two geomet-

ric: (iii) height and (iv) width of a level component bound-

ing box. This paper describes efficient computation of these

extinction values based on the incremental determination of

attributes from the component tree construction in quasi-

linear time, compares the computation time of the method

and illustrates the usefulness of these new extinction val-

ues from real examples.

1. Introduction

The location and segmentation of regions or objects of

interest in a more direct possible way is a feature desired

by many applications of computer vision. In mathematical

morphology, the definition of contours of these objects is

frequently obtained by watershed transformation [3] based

on the influence zone of selected markers. Considering a

gray-level image as a topographical surface (pixel inten-

sity is an altitude value), the plateaus (flat zones) at the

bottom of valleys (regional minima) or at the summits (re-

gional maxima) are typically used as markers. However, im-

ages acquired by cameras or scanners normally provide a

great number of these extrema points which can correspond
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Figure 1. Dynamics of the regional minima.

to undesirable parts or noise, generating a watershed over-

segmentation. The selection of significant minima (darker

regions) or maxima (lighter regions) for selection of good

markers can be done by dynamics [8, 2, 13]. The dynam-

ics of a regional minimum is a contrast measure and can

be seen as the minimum height one has to overcome start-

ing from a valley to reach another deeper valley, as illus-

trated in Figure 1.

The dynamics concept has been extended, by Vachier

and Meyer (1995), by the definition of extinction values

associated to each extremum of the image. The extinction

value of a regional extremum (minimum or maximum) for

any increasing attribute (height, area, volume, etc) is the

maximal size of an attribute filter [5] such that this ex-

tremum still exists after the filtering [21]. Dynamics is a par-

ticular case of extinction value when the attribute is height.

In this work, extinction value of maxima will be used and

the interpretation, in this case, relates to an attribute filter-

ing sufficiently great (removal of considerable summit land)

for vanishing a hill from image relief.

Image pixels can be grouped under certain similarities in



a set of regions. Understanding the image as an organiza-

tion of regions promotes semantic information and enables

the implementation of extinctions. In this sense, the Com-

ponent Tree [16, 12, 10, 4, 14] is a structure based on the re-

lief formed by the decomposition of a gray-level image by

thresholds useful for extinction value determination [2]. It

is especially interesting by presenting features as: (i) there

are algorithms in quasi-linear time [14] and it requires only

the adjacency definition for its construction; (ii) all level

components are unique, corresponding to the lowest num-

ber of connected regions, obtained from decomposition by

thresholding without redundancy of information; (iii) the re-

sults of operations on nodes, as pruning (removing branches

of the extremity nodes) or graft1 (removal of intermediary

nodes), are connected anti-extensive operators that does not

create new contours in the image; (iv) its hierarchical orga-

nization of regions enables a considerable disposal of nodes

in subsequent processing steps (such as shape detection or

matching of images). (v) the possibility of simultaneous fil-

tering of multiple attributes, successive filtering in tree do-

main (image rendering only at the end), allowing the imple-

mentation of efficient algorithms (number of nodes or re-

gions to examine is lesser than the number of pixels), be-

sides other operations based on topology.

Other names for the component tree are found in the

literature for the same (or similar) representation: dendro-

gram [6], connectivity tree [19], confinement tree [12, 11] or

Max-tree2 [17, 7, 15]. In this work, the latter name is prefer-

ably used, being represented by the symbolMTI indicating

the Max-tree of an image I . Some efficient algorithms for

construction of this structure, are based on union-find [14]

or hierarchical flood [7].

In this paper, new attributes are proposed for each node

of the tree – number of descendants, sub-tree height, co-

ordinates of the top-left and bottom-right corner of bound-

ing box of the level component associated – and determined

incrementally in the same algorithm for the Max-tree con-

struction, maintaining running time as fast as the recent so-

lutions in the literature, and increasing the possibilities for

differentiated filtering or segmentation. The main contribu-

tion, however, is to establish new extinction values – be-

yond the height [8], area and volume [21, 20] –, that can

be used as single technique or auxiliary tool in the identifi-

cation of objects of interest in gray-level images. The pro-

posal is to add four extinctions based on the new attributes

mentioned – (i) extinction of descendants; (ii) extinction of

topological height; (iii) extinction of height of the bounding

box; and (iv) extinction of width of the bounding box – in

a fast way from this suitable image hierarchical representa-

1 This designation is not usual and refers to the removal of internal tree
nodes (that are not root or leaves).

2 Max-tree refers to the algorithm introduced by Salembier et al. (1998)
for an efficient implementation of the component tree.

tion. Section 2 describes some preliminary definitions such

as the dynamics, Max-tree, and extinction values. Section 3

details the proposed algorithms and shows tests of perfor-

mance. Section 4 suggests some applications. Finally, we

have conclusions and future works in Section 5.

2. Basic definitions

A gray-scale image is a rectangular matrix I of pixels in

a domain3 E ⊂ N
2. The intensity of a pixel x is denoted by

I(x) ∈ N such that 0 ≤ I(x) ≤ nmax, ∀x ∈ E, nmax ∈ N
∗.

It is binary image if nmax = 1. A negative image of I is

Ī(x) = nmax − I(x), ∀x ∈ E. Let NE(x) a neighbor-
hood of x, a path from x1 to xn is defined as a sequence

Px1,xn
= (x1, x2, . . . , xn), where xi+1 ∈ NE(xi), ∀i ∈

[1, n). A connected component is a maximal subset of pix-
els C ⊆ E, where there is always a path Pxa,xb

entirely in-

side C, ∀xa, xb ∈ C. A flat zone is a connected componentZ
of the image, such that, ∀xa, xb ∈ Z, I(xa) = I(xb). A re-
gional maximum is a flat zoneM such that I(xm) > I(xn),
∀xm ∈ M , for every pixel xn in the neighborhood ofM . A

threshold decomposition is defined by a set of binary images

Xh(I) representing the thresholding of I at each possible

level h, or Xh(I) = {x ∈ E|I(x) ≥ h}, ∀h ∈ [0, nmax].
Level component4 is an image Ck

h(x) = 1 if x belongs to

the connected component of Xh(I) labeled with k ∈ N
∗,

and Ck
h(x) = 0 otherwise, ∀x ∈ E. A connected oper-

ator acts by eliminating or merging of level components,

preserving contours. An attribute µ of a level component

is increasing [5] if Ci
ha

⊆ Cj
hb

⇒ µ(Ci
ha

) ≤ µ(Cj
hb

). An
attribute opening Υµ,λ(I) is a connected operator on im-
age I and consists in to keep only its level components Ck

h

whose increasing attribute µ exceeds a threshold λ [5], or

Υµ,λ(I)(x) = max(∀h,∀k){h·C
k
h(x) |µ(Ck

h) ≥ λ}, ∀x ∈ E.

2.1. Max-tree

Max-tree is a hierarchical structure formed from the re-

lationship between connected regions obtained by threshold

decomposition. In order to organize the level components

Ck
h in a hierarchy, a node N is associated with each. The
descendant relationship between nodes Na and Nb occurs

if and only if Ci
ha
concerning to Na contains C

j
hb
referring

to Nb, where ha < hb [7]. Nr is the root node if related to

unique component C1
min(I), where min(I) is the lowest im-

age intensity. Nl is a leaf node if there is not another level

component inside of its component (regional maximum). If

Ci
ha

≡ Cj
hb
, and ha < hb, a node Nb is only defined for

Cj
hb
(the allocation of a node for Ci

ha
is redundant). In other

3 N is the set of natural numbers (efficient component tree can also be
constructed for images with intensities in the real domain [1]).

4 Also known as peak component, k-component or just connected com-
ponent in the literature.



words, a node is only defined for a level component which

presents a flat zone (visible) at the image.

Figure 2 illustrates the Max-tree building process of an

image with a line and eight columns. We can imagine that

the topographical surface from the gray-level image is com-

pletely submerged initially. As water flows, islands, whose

summit plateaus correspond to the regional maxima (tree

leaves), emerges. Assuming the constant flow of water, a

new plateau (flat zone) can appear (new parent-child re-

lationship) or two or more islands can unite (definition

of a parent for two or more children) successively until

there is only one “block of land” (root of the tree). This is

the method interpretation based on union-find [18, 22, 14].

However, this structure can be formed with equivalent effi-

ciency, from recursive hierarchical flood from the regional

minimum with lowest intensity [17, 7]. In this case, how-

ever, the interpretation is not so simple, but can be seen as

the elevation of water toward the maxima, from its injec-

tion into a mountain at a time (for more details, see Algo-

rithm 2 in Section 3).
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Figure 2. Max-tree construction.

2.2. Dynamics

Path dynamic, assuming Pxa,xb
linking the pixels xa

and xb of an image I , is the difference of levels between

the points of highest and lowest intensity in this path,

or DP (xa, xb) = {max (|I(xi) − I(xj)|) | xi, xj ∈
Pxa,xb

}. Dynamics between two pixels, xa xb, is equal to

the lesser path dynamic between them, or, DX(xa, xb) =
{min(DP (xa, xb)) | Pxa,xb

is one of the possible paths

between xa and xb}. Dynamics of a regional maximumM

0

2

M
3

M
4

M
5

M
6

M
1n

max

h
1

h
2M2

D

M

Figure 3. Dynamics of regional maximumM2.

is the minimum altitude (difference of gray levels) that we

should fall, given a path Pxa,xb
, from a pixel xa of M , to

achieve a pixel xb of another regional maximumMV higher

thanM , or DM = {min(DX(xa, xb)) | xa ∈ M,xb ∈
MV , I(xa) < I(xb)}5. Figure 3 illustrates this idea. Mi,

i ∈ [1, 5], are the regional maxima. To determine the dy-
namics6 ofM2, there are two higher maxima,M1 andM5.

But it is necessary to climb down h1 in the first path and

h2, in the second. Being h2 < h1, the second path (dot-

ted) is preferred, andDM2
= h2. Two situations may occur

in the determination of the dynamics: (i) it is possible that

there is no other higher maximum, and in this case, the dy-

namics is defined as the height of the relief as a whole (or

infinite); (ii) tie, where two or more regional maxima have

same dynamics and are positioned on a same greater moun-

tain (analogous to minima dynamic tie under same valley

described by Grimaud (1992)). In this case, an infinitesimal

difference of height should be considered and the original

dynamics must be assigned to only one of them. The oth-

ers maxima take lower dynamics in relation to another ini-

tially tied maximum with gray-level infinitesimally higher.

In this manner, there is an augment of the influence region

of the most representative maxima, reducing the occurrence

of possible markers for an object localization further analy-

sis. Dynamic is a measure of contrast concise and powerful

for the identification of regions of interest in the image (ex-

amples will be presented in the following sections).

2.3. Extinction values

In the previous section, the dynamic was discussed. In

short, this measures the smallest decrease in altitude, from

a regional maximum, to achieve other higher regional max-

5 Grimaud (1992) presents dynamics of regional minima with inverse
logic in relation to this definition. The use of regional maxima agrees
with the characteristics of the Max-tree. Problems can also be mod-
eled in the Max-tree of the negative image or Min-tree directly.

6 In the absence of specification, it refers to dynamics of regional maxi-
mum.



Figure 4. Attributes from the relief top of a re-
gion of the image.

imum. In other words, it refers to the height extinction of an

hill or mountain in the relief (or sub-tree at theMax-tree) for

λh sufficiently large in an attribute opening Υheight,λh
(I)

(Max-tree pruning). This concept can be extended to other

attributes, in addition to height (related to the difference of

gray levels), since they are increasing from regional maxima

(leaves) to the lowest gray-level (root) of the image (tree).

Figure 4 shows some possible measurements on a level

component (associated to a node N of sub-tree). Above of
this component (descendant nodes ofN ) there is a “stack of
land” of the image relief where area and volume can be de-

termined, in addition to height. All these attributes increase

if a level component is obtained in a lower gray-level thresh-

olding (for example, the parent of a node N presents larger
height, area and volume). Thus, as well as height extinction,

we can define area extinction – from a maximum, the final

area of the hill to achieve another hill (from another regional

maximum) whose base has larger area or Υarea,λa
(I) with

λa sufficiently large for the vanishing of the first hill –

and volume extinction – from a maximum, the final volume

of the hill to achieve another hill (another regional maxi-

mum) with larger volume or Υvolume,λv
(I) with λv suf-

ficiently large for the vanishing of the first. Vachier and

Meyer (1995) suggests extinction values for area and vol-

ume of regional minima. However, the regional maxima are

used in this work because are easily extracted from the effi-

cient Max-tree construction.

3. New extinction values proposed

Once checked the relationship between Max-tree struc-

ture and determination of extinction, by pruning (attribute

opening), any increasing attribute associated with a node

can be used as extinction value. Algorithm 1 is proposed, in

this respect, for the generalization of extinction value calcu-

lation, given any attribute increasing µ, based on informa-

tion from the Max-tree. Broadly speaking, from a tree leaf

NL, a path toward root is initiated. When a parent node of

NA appears with more than one child (line 7), or either, if
a branching tree appears, a verification is done on each sib-

ling of this node: if sibling already visited, and if there is ex-

tinction tie, or if attribute the sibling is higher (lines 9-11),
then the attribute of NA is defined as the extinction of NL

(line 19). Finally, the image is rendered with assigning of

extinction to each level component CNL of regional maxi-

mum represented by a leaf nodeNL (line 21). The attribute
µ can be height (difference of gray level), area or volume,

already well established in the literature. Now, the defini-

tion of new attributes, associated to Max-tree nodes (level

components), is proposed, in order to use as extinction val-

ues in the generic algorithm presented.

Algorithm 1: Generic algorithm to determine the extinc-

tion values using the Max-tree.

INPUT:MTI , µ
OUTPUT: Eµ

EXTINCTION()
1 continue← true
2 for eachNL ∈ (leaves ofMTI )
3 extinction←∞
4 NA ← NL

5 NP ← parent ofNA

6 while continue and ∃NP

7 if (number of children ofNP ) > 1
8 for eachNC ∈ (children ofNP ) and continue
9 if ((NC already visited) and
10 NC 6= NA andNC

µ = NA
µ )

11 or (NC 6= NA andNC
µ > NA

µ )
12 continue← false
13 NC is marked as visited
14 if continue
15 NA ← NP

16 NP ← parent ofNA

17 continue← true
18 if ∃NP

19 extinction← NA
µ

20 NL
ext ← extinction

21 Eµ ← max{NL
ext · CNL | ∀NL ∈ (leaves ofMTI )}

22 return Eµ

Some measures can be added incrementally in Max-tree

construction time. Thus, the algorithm remain with the same

complexity of the original Max-tree algorithm in which it is

based (there are quasi-linear solutions for this issue). In the

set of information associated with each node Nx, it is pos-

sible to include:

• Number of descendants of the sub-tree rooted in Nx

or, in other words, cardinality of the set of nodes of this

sub-tree.

• Topological height of the sub-tree rooted in Nx or,

otherwise, the maximum quantity of edges on the path

(maximum path length) from this root node to any

other descending node (certainly a leaf) in this sub-

tree.

• Height and width of bounding box of the level com-
ponent CNx

, or difference between the higher and

lower line (for height), and between higher and lower

column (for width), considering all the pixels belong-

ing to the level component.

Figure 5 helps in the understanding of these definitions.

For instance, the node C presents 6 descendants (F , G, H ,



Figure 5. Image (left) and its Max-tree (right)
marked with attributes under discussion.

I , J e K) and its topological height is 3, corresponding to
the maximum length of the path to another descending node

(in this case, way up to K). Regarding the bounding box,

for example, the level component concerning the region E

presents height hE and width wE .

These attributes, when applied to Algorithm 1, define

two topological extinctions (in the tree domain): descen-

dants, Edesc, and sub-tree height, Ehtop; and two geomet-

ric extinctions (in the image domain): height and width of

the bounding box, Ehbbox and Ewbbox, respectively.

Algorithm 2 clarifies the incremental calculation of these

attributes in the Max-tree construction process. It modifies

the method based on hierarchical flood of Salembier et al.

(1998), adding determination the coordinates of the top left

corner xp and bottom right corner xy of the bounding box

(initialization in the lines 8-9 and tests in 12-13) for each
pixel p visited (line 11). Signs >̌ or <̂ compares (greater

or lesser) both coordinates (line and column) for bound-

ing box corner determination. LINK (lines 25 and 27) es-
tablishes the connection between the nodes parent and child

represented by a tuple (gray-level and label), in addition to

the current values of xp and xy that should be updated con-

sidering the child pixels included in the parent’s component.

Algorithm 3 details this linking of nodes (line 25 or 27
of Algorithm 2), conforming the hierarchical flood, with the

determination the number of descendants and topological

height incrementally. Firstly, a search by nodes parent and

child is done through an auxiliary hash table (lines 1-2). If
a node is not found, then it is created (lines 4 or 15). Case
there is only the parent node (line 6), then this and all its
ancestors receive more one descendant (lines 7-11) consid-
ering the newly created child. If both nodes already exist

(but are not yet linked), then are added the descendants of

the child more one to the parent’s descendants (line 13). In
any case, the sub-tree height of the parent is updated with

the sub-tree height of the child plus one (line 16). The link-
ing between the nodes is finished (line 17). Finally, the cor-
ners of the bounding box are again observed and updated

when they are necessary (lines 18-21).

Algorithm 2:Max-tree construction, based on Salembier et

al. (1998), with support for new attributes.

INPUT: I ,NE

OUTPUT:MTI

INITIALIZATION:
1 level[k]←false, ∀k ∈ [0, nmax] //current gray levels

2 label[k]← 0, ∀k ∈ [0, nmax] //current labels

3 queue[k]← ∅, ∀k ∈ [0, nmax] //hierarchical queues

4 queue[min(I)].insert(xm) such that I(xm) = min(I)
5 status[x]← 0, ∀x ∈ E ⊂ N2 //persistent labels

6 MTI ← ∅
7 FLOOD(min(I))

FLOOD(n)
8 xp ← {∞,∞} //bounding box top left corner

9 xy ← {0, 0} //bounding box bottom right corner

10 while queue[n] 6= ∅
11 p← queue[n].remove()
12 if p <̂ xp ⇒ xp ← p
13 if p >̌ xy ⇒ xy ← p
14 status[p]← label[n] + 1
15 for each q ∈ NE(p)
16 if status[q] = 0 //not analyzed

17 m← I[q]; queue[m].insert(q); level[m]← true
18 status[q]← −1 //in queue

19 whilem > n
20 m← FLOOD(m)
21 m← n− 1
22 whilem ≥ 0 and (not level[m])
23 m← m− 1
24 ifm ≥ 0
25 MTI .LINK({m, label[m] + 1}, {n, label[n] + 1}, xp , xy )
26 else

27 MTI .LINK({−1, 1}, {min(I), 1}, xp , xy )
28 level[n]← false
29 label[n]← label[n] + 1
30 returnm

Figure 6 compares Max-tree construction time of four

different algorithms7: a1 using hash table [9]; a2 using

union-find [14]; a3 toolbox
8 based on Salembier (1998); a4

referent to Algorithms 2 and 3 presented9. At least the al-

gorithms a2, a3 and a4 calculate height, area and volume

attributes. a3 and a4 also determine the bounding box. Al-

gorithm a4 proposed also adds number of descendants and

topological height incrementally. Each point in the plot-

ting consists in the time t(n) (milliseconds) for the Max-
tree construction of a random image IR with n pixels.

IR(x) = rand(nmax), ∀x ∈ E, with dimensions N × N

(n = N2 pixels) for N = 100k such that k = [1, 15]
(15 images). The proposed implementation, as well as adds
new attributes, has performed better than the other solu-

tions. This was possible due the data structures used, in-

volving a hashing allocated from image histogram informa-

tion (see its use at lines 1 and 2 of Algorithm 3) and mem-
ory allocation for new nodes (lines 4 and 15) in block (a
node is available from a vector of nodes previously allo-

cated and, if there are not more free nodes, a new vector of

7 All tests were done on a Mobile Pentium c© 4, 3.2GHz, 512MB, and
the four algorithms were implemented in C/C++.

8 http://mmorph.com

9 http://code.google.com/p/extinction-values



Algorithm 3: Algorithm for insertion of parent-child rela-

tionship and calculation of new attributes.

INPUT:MTI , {nparent, lparent}, {nchild, lchild}, xp , xy

OUTPUT:MTI

LINK()
1 NP ←MTI .HASH TABLE({nparent, lparent})
2 NC ←MTI .HASH TABLE({nchild, lchild})
3 if ∄NP

4 NP ←MTI .NEW NODE({nparent, lparent}, xp , xy )
5 else

6 if ∄NC

7 NP
desc ← N

P
desc + 1

8 NA ← parent ofNP

9 whileNA

10 NA
desc ← N

A
desc + 1

11 NA ← parent ofNA

12 else

13 NP
desc ← N

P
desc +NC

desc + 1

14 if ∄NC

15 NC ←MTI .NEW NODE({nchild, lchild}, xp , xy )
16 ifNP

htop ≤ N
C
htop ⇒ NP

htop ← N
C
htop + 1

17 linkNC as child ofNP

18 if xp <̂NC
xp

⇒ NC
xp
← xp

19 if xy >̌NC
xy

⇒ NC
xy
← xy

20 ifNC
xp

<̂NP
xp

⇒ NP
xp
← NC

xp

21 ifNC
xy

>̌NP
xy

⇒ NP
xy
← NC

xy
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Figure 6. Comparison of Max-tree construc-

tion time.

same size as the previous is allocated), beyond the calcula-

tion of incremental attributes (updated throughout the itera-

tions of the Salembier’s algorithm) that has little influence

in the total time of the Max-tree construction.

In relation to determination of extinctions, it was ob-

served that the four proposals have similar time since they

are implemented from the same Algorithm 1. Addition, the

time of each extinction is not far from the Max-tree con-

struction time, conforming Figure 7, following the same

linearity. Reviewing Algorithm 1, we can see that its com-

plexity depends on the number of leaves (line 2), beyond
the number of steps, from each leaf, toward the tree root

(line 6). And, once found a branch (line 7), still is neces-
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Figure 7. Running time for Max-tree and ex-
tinctions proposed.

sary a scan in the children of the last node for verification

of the dynamics (line 8). Considering several tests done, the
number total the iterations of these three loops increases lin-

early with respect to the number of nodes Nnodes of the in-

put Max-tree (there are around 1.8 × Nnodes iterations for

15 random images independent of their dimensions). The
number of nodes depends on the image content. An analy-

sis for the maximum and minimum quantity of nodes in re-

lation to the number of pixels is done in [7] (Chapter 3).

3.1. Examples

Figure 8 illustrates a synthetic image and its Max-tree

with the maximum extinction values (components in red

indicated by arrows) obtained from traditional attributes

(height, area and volume) and the new values proposed in

this work (descendants, topological height, bounding box

height and width). The table, in turn, shows the extinctions

of all maxima, highlighting the highest in bold. The added

resources signal potential applications where the tree topol-

ogy or the component geometry can be explored.

4. Computer vision applications

In this section, some applications of extinction values
are presented, emphasizing the new attributes proposed.
The regional maxima with significant extinctions are high-
lighted (in red). Only the regional maxima, whose ex-
tinction values are above a certain value or in a range
of values, are selected. All tests can be reproduced us-
ing the source code and images of this work available at
http://code.google.com/p/extinction-values.



image I max(Eheight) max(Earea)

max(Evolume) max(Edesc) max(Ehtop)

max(Ehbbox) max(Ewbbox)

MTI and selected maxima
Node Eheight Earea Evolume Edesc Ehtop Ehbbox Ewbbox

128 (3) 128 1056 135168 1 1 172 8

255 (1) 255 143 36465 1 1 13 11

80 (1) 80 78948 1328880 1 1 113 147

128 (2) 128 1806 231168 1 1 6 459

200 (1) 200 15481 3870261 3 3 113 137

80 (2) 80 4514 139020 4 5 61 74

100 (5) 40 72 2880 1 1 9 8

100 (4) 40 64 2560 1 1 8 8

100 (3) 40 272 10880 1 1 16 17

100 (2) 40 108 4320 1 1 63 6

200 (2) 200 3969 281380 19 3 16 63

Extinctions for each regional maximum

Figure 8. Illustration of the maximum extinc-
tion values for a synthetic image I (459×172).

4.1. Indirect counting

Vision systems can be used to avoid efforts of manual counting

of pieces, objects, fruit, cells, etc, with greater speed and, in some

cases, with greater precision, assuming no interference as fatigue,

for instance. Figure 9 shows some examples where significant ex-

tinctions of descendants and topological height have adapted for

the counting of tomatoes, beans, brigadeiros, and blood cells (the

last two applied on the negative image).

4.2. Quality inspection

Control of industrial processes is another vision application.

For example, the verifying of label integrity, the presence of all

pieces in a set, the automatic inspection of shapes, sizes, colors,

among others. Figure 10 shows significant extinctions of bound-

ing box height and width of tablets, with application in the phar-

maceutical industry.

5. Conclusion

The extinction values are powerful tools in applications of

computer vision, indicating the placement of objects, according

to their topological or geometrical features. Even with noisy im-

ages and wide variation in the range of extinction values, the re-

Edesc ≥ 300 Ehtop ≥ 50

Edesc ≥ 500 Ehtop ≥ 15

Figure 9. Indirect counting from descendants
and topological height extinction.

Ehbbox ≥ 50 80 ≤ Ewbbox ≤ 90

50 ≤ Ehbbox ≤ 100 Ehbbox ≥ 100

Figure 10. Quality inspection from bounding

box extinction.

sults of the regional maxima selection with highlighted extinctions

remain robust. The extinction value selection by threshold was suf-

ficient to detect and count objects of interest in the experimentation

reported in this paper. The Max-tree implementation of the com-

ponent tree is based on Salembier et al. (1998), modified to com-

pute the attributes incrementally. The speed efficiency was signif-

icant when compared to other algorithms.

Four new extinction values were proposed. The descendant ex-

tinction value signals the complexity of a region, in the sense of

having many hills and summits, which can be useful in texture de-

tection. The topological height indicates the amount of overlap-

ping of “layers of land”, which can be useful in detecting of spher-

ical or pyramidal shaped objects. The height or width of a level



component bounding box reflects the approximate size, in pixels,

of a object (lighter than its background) in the image.

A more careful research of new applications must be estab-

lished. As future work, it would be interesting to focus in a sin-

gle problem, examining, in more details, all the characteristics that

this proposal differs in relation to other solutions, for the same pur-

pose, in the literature.
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