
A Parallel Multi-View Rendering Architecture

Wallace Lages, Carlúcio Cordeiro, Dorgival Guedes

Deep Computing Visualization Center
Universidade Federal de Minas Gerais

Belo Horizonte, Brasil
wlages@ufmg.br, carlucio@dcc.ufmg.br, dorgival@dcc.ufmg.br

Abstract

We present an architecture for rendering multiple views
efficiently on a cluster of GPUs. The original scene is sam-
pled by virtual cameras which are used later to reconstruct
the desired views. We show that this image-based approach
can be very scalable and support rendering at interactive
rates.

1. Introduction

Multiple views are typically used to give sense of depth
and perspective for stereo and autostereoscopic displays [3],
[10], [11], [13],[25]. However, multiple viewpoints are also
needed if we want to support several users visualizing a
given dataset at the same time. Among these applications
we may include: engineering projects, virtual reality envi-
ronments, geographic models and massive computer games.
Each user is connected to the rendering cluster by a thin
client and is interested on a particular view of the stored
dataset.

To be able to render hundreds or thousands of views at
interactive rates, we need a solution which is both scalable
and efficient. Clusters of GPUs have become an attractive
platform for rendering tasks, since they have an excellent
price-to-performance ratio and are easily available.

In this paper we present a parallel architecture designed
to render multiple views interactively on a cluster of GPUs.
The main challenges are to obtain an efficient paralleliza-
tion, minimize the overhead due to communication and
scale as both more users and more PCs are added to the sys-
tem.

Our idea is to combine sampler nodes with image-based
renderers so that computation can be parallelized and reused
among the views. We analyze the theoretical speedup with
respect to the number of views and provide experimental ev-
idence that the proposed architecture is feasible for the task.

This paper is organized as follows: In section 2 we dis-
cuss relevant related work. In section 3 we describe the ar-
chitecture and parallelization strategy, in section 4 we ex-
plain details of the light field renderer. In section 5 we pro-
vide experimental results that support our findings. In sec-
tion 6 we discuss future work and conclude.

2. Background and Related Work

Following we give a brief overview on multiple view-
point rendering and parallel rendering.

2.1. Multiple Viewpoint Rendering

Rendering multiple views using the standard graphics
pipeline is a difficult problem. The current rasterization
architecture requires an early decision of the viewpoint,
which makes it difficult to explore coherence between the
views. For this reason, Halle [10] suggested rendering the
views into a spatio-perspective volume, created by render-
ing epipolar images. Hübner et al. [13] developed a multi-
view splatting technique which renders the necessary views
for each splat just one time. They use the GPU to project
each splat to all views at once.

Other attempts in multi-view rendering involved new
hardware. Hasselgren and Akenine-Möller [11] proposed an
architecture capable of rendering each triangle to multiple
views simultaneously, improving texture access coherence.
Stewart et al. developed PixelView [25], a hardware proto-
type that employed a 4D frame-buffer to support view se-
lection at the time of raster scan-out. Although these propo-
sitions allow us to explore new algorithms, they have lim-
ited use in the current available hardware.

The concept of using a sampled 4D buffer to generate
new views is known as lumigraph or light field rendering.
A light field [16] is a dense sampling of the 5-dimensional
plenoptic function [1], which describes the radiance of ev-
ery point in space (Px, Py, Pz) in all directions (θ, φ). If

we consider only the subset of rays leaving a bounded ob-
ject, the function can be further reduced to 4 dimensions [9]

Besides being used by Stewart et al. [25], light fields
have been used in the literature to generate new views from
a camera array [31]. In a certain sense the buffer proposed
by Halle [10] can also be considered a light field. However,
in our work, rather than constructing and sampling the en-
tire light field for each new view, we are only interested in
using it as a way to share rays among views and avoid du-
plicated computational effort.

Even using ray sharing, the cost of rendering multiple
views interactively is still larger than the power available
from a typical graphics card. For this reason, we propose
a scalable parallel architecture. Annen et al. [3] describes
a distributed system for rendering multiple views for paral-
lax displays. However, they do not explore any sort of co-
herence in the views, and focused only at scalability and
load balancing. Yang et al. [31] developed a system that dis-
tributes some of the steps necessary to reconstruct a single
view, achieving scalable bandwidth costs. Similar to ours,
they do not use a ray buffer, so it can be applied to dynamic
scenes.

2.2. Sampling Issues in light field rendering

The minimum number of samples required to reconstruct
a signal is a classic problem in image processing and com-
puter graphics. Sampling analysis in image based rendering
is a difficult problem because it involves a complex rela-
tionship among three elements: the depth and texture infor-
mation of the scene, the number of sample images, and the
rendering resolution [6], [17],[18].

It is well known that depth information, besides improv-
ing rendering quality, also affects sampling rate. Since per-
pixel depth information is free on synthetic images, it has
been used on some recent work [22],[28].

It is also important to use a good sampling structure.
For objects it is common to use a spherical parametrization
[14],[28]. For environments this is not so clear. The sim-
plest approach is to sample the scene using a regular grid
[23]. Another possibility is to generate samples adaptively
as in [15].

2.3. Parallel Rendering

Parallelism has been used many times for accelerating
rendering. One can either divide the rendering steps among
the processors (pipelining) or split the rendering data. An-
other possible option is to explore the time dimension.

Following the taxonomy proposed by Molnar et al. [21]
we can classify the rendering architectures by the time when
visibility is solved. Sort-first architectures divide the final

image in disjoint tiles. Each node is responsible for ren-
dering one or more tiles which are easily composed after-
ward. In sort-last architectures, each node renders a portion
of the primitives into an image, recording the z value for
each pixel. Later, all images are composited into a final im-
age using the z values of each one. In the sort-middle so-
lution, the primitives are first distributed to geometry pro-
cessors to be transformed and projected. After projection
they are redistributed again among rasterization processors.
As the sort-middle approach requires reading back the pro-
jected geometry it is not well suited to GPUs with dedicated
pipelines.

Sort first architectures usually have smaller communica-
tion requirements, but they suffer from a higher process-
ing cost, caused by duplicated rendering among tiles and
the transforming necessary for sorting. On the other hand,
sort last renders each primitive exactly once, without trans-
forming them. This makes it more scalable than the sort first
approach. As a disadvantage, the composition step is more
complex and the bandwidth requirements are greater. Sev-
eral systems and parallelization strategies have been pro-
posed along the years for both sort-last and sort-first ap-
proaches. For a summary please refer to Crockett [7].

More relevant to our work is the parallelization of image
based renderers. Sloan and Hansen [24] present three tech-
niques for reconstructing lumigraphs in parallel. However,
they use target a distributed shared memory ccNUMA com-
puter. A more recent work has been developed by Strasser
et al. [26]. The MLIC system uses an image cache to de-
couple image rendering from visualization and distribute
the rendering calculations among multiple computers. They
decompose the space around the view-point into six pyra-
mids. Images are placed at fixed positions with respect to
the view-point and may be further refined with a kd-tree.
Displaying the image database involves visiting all the poly-
hedra, and traversing the accompanying kd-trees in a top-
down manner and back-to-front.

Many hybrid geometry/image systems have also been
proposed for parallel rendering of massive models. The ba-
sic idea is to render objects far from the viewpoint using
fast image-based techniques. Among them we may cite the
work of Wilson and Manocha [30], Aliaga et al. [2] and De-
bevec et al. [8].

3. Parallel Multi-view Rendering

The time required to render a number of views V using
the standard rendering pipeline is gV , where g is the time
to render a single view:

Tnaive = (gV)

To render multiple views in a scalable fashion, we need
a parallel architecture. The most naive parallelization is to

divide the views among the available processors P , so that
the time between two views is:

T||naive = (gV)/P (1)

We can assume that the load is evenly distributed since
an image can be sliced between two or more processors.
This architecture is depicted in Figure 1.

Figure 1. Intuitive Architecture - The views
are distributed among the available GPUs.
Each GPU render the entire pipeline.

However, to improve the performance while rendering
multiple views, we would like to reuse computation that can
be shared among the views. We propose using a light field
renderer to render the views from scene samples instead of
the original geometry. If S is the number of images neces-
sary to sample the environment and c the time to compose
a new image from the samples, we can split the gV into a
sampling and compositing steps, so that:

Tnew = (Sg + V c)

This formulation is faster than Tnaive above a certain
number of views as long as c < g. The efficient paralleliza-
tion of this new algorithm, requires a change in the archi-
tecture, since all compositing tasks must access the samples
being generated. We split the processors into a 2 level su-
perscalar pipeline. The first level is responsible for generat-
ing the samples, the second for compositing the views (Fig-
ure 2).

From the P processors available, K are used to sample
the environment while (P − K) are used to compose the
final views. In the new system, the time between the ouput

of two consecutive images is equal to the time taken by the
slowest stage.

T||new = Max

(
Sg

K
,

V c

P −K

)
(2)

Figure 2. Proposed Architecture - The
pipeline is divided into sampling and com-
positing stages. The GPUs are assigned to
each stage as a function of the number of
views.

We know that T||new is minimum when both stages takes
the same time. However, if we impose the additional restric-
tion thatK ∈ Z, a perfect balancing can not be achieved for
all V . In this case the optimal K can be found by equat-
ing T||new for K and K − 1. The expression for the a dis-
crete setting is:

Kfd(S, g, V, c, P) =
⌊
SgP + V c

V c+ Sg

⌋
(3)

Since the new rendering formulation (Tnew) can be used
to save computation on a serial processor, it will be used to
derive the speedup S for both systems:

Snaive =
Tnew

T||naive
= (Sg + V c) · P

gV
(4)

Snew =
Tnew

T||new
= (Sg + V c) ·Min

(
K

Sg
,
P −K
V c

)
(5)

Since we are assuming c < g, Snaive < Snew above a
certain number of views.

4. Light field Rendering

Our light field renderer builds upon the work on per-pixel
depth information for the correction of rays during recon-
struction [22], [28], [12], [29].

There are many ways of parameterizing the 4D light
field. The best one depends on the application domain, but
they usually possess good sampling characteristics and can
ease the reconstruction task. Among the parameterizations
proposed in the literature we may cite: two planes [16],
cylindrical [20], spherical [28], [14], two spheres, plane-
sphere [5] and non structured [22], [4], [27].

For this paper we chose to use a heightfield terrain. For
this reason, we decided that a 2 plane parametrization (2PP)
would be a good fit. The 2PP index each ray entering the
scene by a pair of points (u, v) and (s, t) on the two planes.
The (s, t) plane is known as view point plane and the (u, v)
as image plane.

4.1. Acquiring depth images

Each block of the scene is enclosed in the volume de-
fined by the planes z = 1, z = 0, x = ±1 and y = ±1.
Four cameras are at the positions (−1,−1, z) (−1, 1, z),
(1,−1, z) and (1, 1, z) At each frame, the 4 cameras ren-
der the scene (Figure 3) and store the depth in the alpha
channel as:

d =
|Pg − P1|
|P1 − P0|

where P1 and P0 denotes the intersections of the view-
ing ray with the plane z = 1 and z = 0 respectively. Pg

is the point where the viewing ray intersects the geometry
(This is demonstrated in Figure 4, for the ray exiting cam-
era Ca).

4.2. Rendering new views

The rendering algorithm was implemented in a GLSL
fragment program. To render a new view, we need the po-
sition of the viewing camera Cvp, the position for each of
the k sample cameras Ckp and the image plus depth cap-
tured by each one Cki. We also need a projection matrix
Proj to specify the camera model. In this work we con-
sider that all the cameras are always looking to the center of
the tile, so orientation information is not needed.

To be able to use the fragment shaders, we need a render
surface. So, for each tile described on the previous section,
we draw a quad. The quad is parallel to the plane z = 0 and
positioned at the origin. This will guarantee a render sur-
face as long as the desired camera has a Z coordinate greater
than the near clipping distance.

Figure 3. Four cameras are used to sample
each tile. The sample volume is delimited by
the planes z = 0, z = 1, x = ±1, y = ±1

Figure 4. Given ray r, we must find coordi-
nates (u,v) and (u’,v’) which correspond to in-
tersection point Pg

To render a new view, we must decide for each pixel,
which samples to use. If the depth is known, we can use im-
age warping to project pixels from one view to another[19].
This can be done performing a search along the view ray,
reprojecting the point into each camera and comparing the
distance with the value stored in the image [28].

First, we need to compute the viewing vector for each
pixel. This can be computed passing the vertex position as
an interpolated variable from the vertex shader:

v = normalize(V ertexPos−Dv)

Next we need to compute the full projection matrix for
each camera Ckp This can be achieved composing the pro-

jection matrix Proj with each camera position and orienta-
tion.

Projk = Proj ∗ rotk ∗ offsetk

If more than one camera is looking at the same point, we
choose one of the samples.

We chose to apply inverse warping so that we could use
GPU interpolation and avoid holes in the image. In order to
find the correspondence between the cameras we need the
depth of each pixel in the new image. There are many ways
to obtain that, but they all involve some kind of search along
the view ray v, for the intersection with the surface implic-
itly defined by the other cameras. For the sake of simplicity,
we decided to use a linear search.

The search starts at the point where v intersects the plane
z = 1. At each iteration, the current point can be expressed
by:

P = plane.s1 + v ∗ δ

where

δ =
|plane.s− plane.s1|

steps

and plane.s1 and plane.s correspond to the intersections
between v and z = 0 and z = 1 respectively.

To find the intersection with the surface, we employ an
approach similar to the one used by Todt [28]: at each step
we project the current point onto each camera k. This will
yield a (x, y) pair that can be used to retrieve the surface
position Cks stored for each camera along the ray Ckp

Cks = plane.s ∗ Cki.depth+ (1− Cki.depth) ∗ plane.s1

However, instead of comparing the position P with the
estimate Cks, we compare the distance from Ckp to the cur-
rent point P and the distance from Ckp to the surface Cks.

if (|Cks − Ckp| − |P − Ckp|) < 0 the point P has en-
tered the surface and we can refine the position with a bi-
nary search.

We don’t interrupt the search until P is considered inside
the surface for all the camera estimates Cks. At that point
we choose the sample with the more conservative estimate
(the one closer to the surface).

5. Experimental Results

In this section we report the data collected to investigate
the speedup, efficiency, communication costs and load bal-
ancing for a real implementation. We have implemented the
system described in this paper on a Linux cluster, composed
of 11 dual-Pentiums 3.40GHz 64bits, connected by a Gi-
gabit ethernet. Each PC has 3GB of memory and a Nvidia
GeForce 7900 GTX/PCI/SSE2. We used OpenGl and GLSL

for graphics and LAM/MPI: 7.0.6 for interprocess commu-
nication.

As input database we used a scene composed of one
highly tessellated tree over a heightfield terrain. The scene
has approximately 500 thousands triangles and was lit by a
simple phong shader. During the simulation we logged:

1. The time required for rendering a view from the origi-
nal data

2. The time required for rendering a view from the ob-
tained samples

3. The time spent transferring between GPU and CPU

4. The time spent transferring data over the network

5. The total running time

For each camera we rendered 5 frames, moving the
viewpoint in them. The samples were taken with a 45 de-
gree projection and a resolution of 400x300 pixels. Output
views were rendered at 200x150 resolution. To improve the
throughput, network transmission was intercalated with ren-
dering. The sample images were transmitted uncompressed
using point to point communication.

In the tests involving a variable number of GPUs, we
used Kfd (eq. 3) to ensure the best distribution among the
stages. An output of the system is shown in Figure 9.

Performance
We measured the total rendering time (see Figure 5) and

the time spent in each sub-task (see Figure 6) for an increas-
ing number of views. Our system rendered 290 views in
2.61 seconds, spending approximately 9 ms per frame with
5 GPUs. The GPU/CPU communication costs were negligi-
ble. The time spent in MPI receive routines increased when
more nodes were allocated to sampling. This was expected,
since we used a point to point protocol. A collective func-
tion would help to keep this from growing too fast but this
is not a problem since the sampling costs are independent
from the number of views.

Speedup, efficiency and scalability
To compute the speedup we compared the total running

time against the time a naive parallelization would take in a
perfect implementation. As discussed in Section 3, this cost
is equal to (gV). Figure 7 shows the results for 1000 views.
The measured efficiency for 1000 views in Table 1 and a
scalability comparing our approach against the naive one is
in Figure 8

Rendering Quality We have compared image quality
by rendering the original geometry for some views. Ide-
ally these images would be equal to the ones generated by
the light field renderer. However, the fidelity depends on the
sampling rate used. In all the tests we used 4 cameras, which
happens to be enough for our scene. The image quality also

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 50 100 150 200 250 300

Ti
m

e
(s

)

Number of Views

Theoretical and measured running times

theoretical time for the proposed parallelization
theoretical time for the naive parallelization

measured time for the proposed parallelization

Figure 5. Time spent by the naive and pro-
posed parallelizations using 5 GPUs

Total Efficiency Efficiency
GPUs (Proposed) (Naive)

5 0.715 0.103
6 0.757 0.105
7 0.792 0.106
8 0.812 0.108
9 0.818 0.108

10 0.826 0.110
11 0.829 0.110

Table 1. Efficiency of Proposed and Naive
Parallelizations for 1000 views. Number of
GPUs allocated to sampling: 1

depends on the number of steps used to refine the geome-
try intersection. For the quality tests we used the Stanford
Bunny model 1 and 100 steps.

To compare the reference and the rendered images, we
used the Perceptual Image Diff Utility 2. This utility makes
use of a computational model of the human visual system to
compare two images. A comparison between an image pro-
duced by our method and one rendered from original ge-
ometry is shown in Figure 11. Visible differences are high-
lighted in red.

1 http://graphics.stanford.edu/data/3Dscanrep/
2 http://pdiff.sourceforge.net/

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300

Ti
m

e
(s

)

Number of Views

Time spent per frame for each step of the algorithm

sample generation
texture download

texture upload
view compositing

total
receive

Figure 6. Time spent in the main steps of the
algorithm

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 4 5 6 7 8 9 10 11 12

Sp
ee

du
p

number of GPUS

Speedup for both parallelizations

speedup for the proposed parallelization
speedup for the naive parallelization

Figure 7. Speedup of the naive and proposed
parallelizations for a load of 1000 views.

6. Future work and Conclusion

In this paper we presented a parallel architecture for ren-
dering multiple views in a cluster of GPUs. We have shown
a theoretical analysis of speedup and scalability of the pro-
posed system, showing how it can be superior to a naive
parallelization. In the results, we have supported this analy-
sis by running experiments on a rendering cluster.

The main insight of this work was the use of an image
based renderer to avoid duplicated work among the views.
At the same time, an efficient parallelization was found,
what enables the system to scale very well with the num-

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300

Ef
fic

ie
nc

y

Number of Views

Variation of efficiency as the number of views increase (5 GPUs)

efficiency of the proposed parallelization
efficiency of the naive parallelization

Figure 8. Scalability of the naive and pro-
posed parallelizations

Figure 9. Render of the scene

ber of views.

The main tradeoff of the system is the sampling process,
which may be complex for some scenes. In a future work,
we would like to experiment with adaptive camera position-
ing, so that we can improve the sampling of more complex
scenes.

Another area of work is the overall optimization of the
system, using faster texture transfer primitives (pixel/frame
buffer objects), dynamical load balancing and faster im-
age composition, using better search strategies.

Acknowledgments The authors would like to thank
João Luiz Campos and the Tecgraf Group at PUC-Rio for
their support with the experiments. We also would like
thank CAPES-Brazil for their financial support.

Figure 10. Input samples and contribution on
the final image

Figure 11. Output quality. a) render from the
geometry; b) output of the light field, c) per-
ceptual difference

References

[1] E. H. Adelson and J. R. Bergen. The plenoptic function and
the elements of early vision. Computational Models of Vi-
sual Processing, pages 3–20, 1991.

[2] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang,
C. Erikson, K. Hoff, T. Hudson, W. Stuerzlinger, R. Bas-
tos, M. Whitton, F. Brooks, and D. Manocha. Mmr: an in-
teractive massive model rendering system using geometric
and image-based acceleration. In I3D ’99: Proceedings of
the 1999 symposium on Interactive 3D graphics, pages 199–
206, New York, NY, USA, 1999. ACM.

[3] T. Annen, W. Matusik, H. Pfister, and H.-P. Z. M. Seidel.
Distributed rendering for multiview parallax displays. Tech-
nical report, Mitsubishi Electric Research Laboratories, Jan.
2006. ”Distributed Rendering for Multiview Parallax Dis-
plays”, SPIE Conference Stereoscopic Displays and Virtual
Reality Systems XIII, Vol. 6055, pp. 231-240, January 2006,
SPIE Proceedings.

[4] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Co-
hen. Unstructured lumigraph rendering. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages 425–432,
New York, NY, USA, 2001. ACM.

[5] E. Camahort, A. Lerios, and D. Fussell. Uniformly sampled
light fields. Technical report, Austin, TX, USA, 1998.

[6] J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong. Plenoptic
sampling. In SIGGRAPH ’00: Proceedings of the 27th an-
nual conference on Computer graphics and interactive tech-
niques, pages 307–318, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[7] T. W. Crockett. Parallel rendering. Icase report 95-31; nasa
cr-195080, Apr. 01 1995.

[8] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and
rendering architecture from photographs: a hybrid geometry-
and image-based approach. In SIGGRAPH ’96: Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 11–20, New York, NY, USA,
1996. ACM.

[9] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-
hen. The lumigraph. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, pages 43–54, New York, NY, USA, 1996.
ACM.

[10] M. Halle. Multiple viewpoint rendering. In SIGGRAPH
’98: Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques, pages 243–254,
New York, NY, USA, 1998. ACM.

[11] J. Hasselgren and T. Akenine-Möller. An efficient multi-
view rasterization architecture. In T. Akenine-Möller and
W. Heidrich, editors, Eurographics Workshop/ Symposium
on Rendering, pages 61–72, Nicosia, Cyprus, 2006. Euro-
graphics Association.

[12] W. Heidrich, H. Schirmacher, H. Kück, and H.-P. Seidel. A
warping-based refinement of lumigraphs. In N. Thalmann
and V. Skala, editors, Proc. WSCG ’99, 1999.

[13] T. Hübner, Y. Zhang, and R. Pajarola. Multi-view point splat-
ting. In Y. T. Lee, S. M. H. Shamsuddin, D. Gutierrez, and
N. M. Suaib, editors, GRAPHITE, pages 285–294. ACM,
2006.

[14] I. Ihm, S. Park, and R. K. Lee. Rendering of spherical light
fields. In PG ’97: Proceedings of the 5th Pacific Conference
on Computer Graphics and Applications, page 59, Washing-
ton, DC, USA, 1997. IEEE Computer Society.

[15] S. Jeschke, M. Wimmer, H. Schumann, and W. Purgathofer.
Automatic impostor placement for guaranteed frame rates
and low memory requirements. In I3D ’05: Proceedings of
the 2005 symposium on Interactive 3D graphics and games,
pages 103–110, New York, NY, USA, 2005. ACM.

[16] M. Levoy and P. Hanrahan. Light field rendering. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 31–42,
New York, NY, USA, 1996. ACM.

[17] Z. Lin and H. Shum. On the number of samples needed in
light field rendering with constant-depth assumption. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR-00), pages 588–597, Los Alami-
tos, June 13–15 2000. IEEE.

[18] Z. Lin and H.-Y. Shum. A geometric analysis of light field
rendering. Int. J. Comput. Vision, 58(2):121–138, 2004.

[19] L. McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, University of
North Carolina at Chapel Hill, 1997.

[20] L. McMillan and G. Bishop. Plenoptic modeling: An image-
based rendering system. Computer Graphics, 29(Annual
Conference Series):39–46, 1995.

[21] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting
classification of parallel rendering. Technical Report TR94-
023, 8, 1994.

[22] H. Schirmacher, C. Vogelgsang, H.-P. Seidel, and G. Greiner.
Efficient free form light field rendering, 2001.

[23] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and
J. Snyder. Hierarchical image caching for accelerated walk-
throughs of complex environments. In SIGGRAPH ’96: Pro-
ceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, pages 75–82, New York, NY,
USA, 1996. ACM.

[24] P.-P. Sloan and C. Hansen. Parallel lumigraph reconstruction.
In PVGS ’99: Proceedings of the 1999 IEEE symposium on
Parallel visualization and graphics, pages 7–14, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

[25] J. Stewart, E. Bennett, and L. McMillan. Pixelview: A view-
independent graphics rendering architecture. In T. Akenine-
Möller and M. McCool, editors, in: proc of Graphics Hard-
ware, pages 75–84, 2004.

[26] J. Strasser, V. Pascucci, and K.-L. Ma. Multi-layered im-
age caching for distributed rendering of large multiresolution
datasets. In B. Raffin, A. Heirich, and L. P. Santos, editors,
Eurographics Symposium on Parallel Graphics and Visual-
ization, pages 171–177, Braga, Portugal, 2006. Eurographics
Association.

[27] K. Takahashi and T. Naemura. Unstructured light field ren-
dering using on-the-fly focus measurement. In ICME, pages
205–208. IEEE, 2005.

[28] S. Todt, C. Rezk-Salama, and A. Kolb. Fast (spherical) light
field rendering with per-pixel depth. Technical report, Uni-
versity of Siegen, 2007.

[29] C. Vogelgsang and G. Greiner. Adaptive lumigraph render-
ing with depth maps. Technical Report 3, IMMD 9, Univer-
sitaet Erlangen-Nuernberg, 2000.

[30] A. Wilson and D. Manocha. Simplifying complex environ-
ments using incremental textured depth meshes. ACM Trans.
Graph., 22(3):678–688, 2003.

[31] J. C. Yang, M. Everett, C. Buehler, and McMillan. A real-
time distributed light field camera. In In: proc. of the 13th
Eurographics workshop on Rendering, Italy, pages 77–86,
2002.

