
Using Multi-Agent Systems for Sampling and Rendering Implicit Surfaces

Pauline Jepp
INESC-ID

Lisbon, Portugal
pjepp@inesc-id.pt

Jörg Denzinger
University of Calgary

Canada
denzinge@ucalgary.ca

Brian Wyvill
University of Victoria

Canada
blob@cs.uvic.ca

Mario Costa Sousa
University of Calgary

Canada
smcosta@ucalgary.ca

Abstract

In this paper a Multi-Agent System for Sampling and
Rendering Implicit Surfaces is presented (MASSRIS). Pre-
vious approaches to pen-and-ink style renderings of im-
plicit surfaces were based on particle systems, which, for
a complex surface, are slow to achieve a good distribu-
tion of particles and subsequently to trace features. The
method proposed in this research extends traditional par-
ticles into semi-autonomous agents that sample the implicit
model and illustrate surface features. Agents use goal di-
rected behaviours to achieve a good coverage of surface
strokes and feature outline identification faster than with
previous particle-based methods.

1. Introduction

In computer graphics, skeletal Implicit Surface (IS)
modelling techniques have been used to create representa-
tions of a variety of objects. Complex IS are slow to eval-
uate [3] therefore some important work has been done to
speed up evaluation of the model definition, such as us-
ing spatial caching [21]. Particle Systems (PS) are used for
both faster visualisation and creating Non-Photorealistic
Rendering (NPR) styles [8, 19, 10, 23]. Real-time interac-
tion and viewing rates are achieved for relatively simple
models [24, 19, 6, 23]. Sampling and rendering more com-
plex models, however, does not achieve comparable results
[10, 9]. Speed limitations arise from the method of dis-
tributing particles by repulsion.

Traditional PS use a repulsion based distribution ap-
proach to cover a surface and also to evaluate local surface
properties that determine features and feature outline loca-
tions [24, 19, 10, 23]. Particle distribution is not directed
towards particular areas of the surface, therefore identifica-
tion of surface details is haphazard in this respect. When the
aim of a rendering is to identify feature outlines a complete
coverage of particles is not essential, it is required only inas-
much to identify the location of lines. Similarly, where short

Figure 1. Jug with stipples and short strokes.

strokes or stipples are required, particles produce good re-
sults but the PS is neither mandatory nor the only solution.

In this research, the traditional PS is extended into a
Multi-Agent System (MAS) that improves on the efficiency
of previous particle based methods. Agents identify and
trace surface feature outlines faster by using highly im-
proved methods of goal direction and co-ordination.

Efficiency is improved using a combination of object
space agents and a manager agent, see Fig 2. A rough poly-
gonisation is used to initialise the MAS, with more preci-
sion achieved by querying the implicit model directly. Ini-
tially agents analyse polygon and voxel data to estimate
surface behaviour and identify potential feature outline lo-
cations. This data is stored in an abstraction of the model
space known as a blackboard [11, 5]. A manager agent then
analyses this data and creates prioritised lists of tasks (e.g.
trace a feature outline or explore a region) to which semi-
autonomous explorer agents attend. The results of agents
exploration is stored in the blackboard and included in sub-
sequent iterations of manager agent analysis and task list
preparation. The manager also interprets user requests when
creating prioritised task lists. The task descriptions and the
method of completing them are therefore more goal directed
when compared with a traditional PS approach where fea-
ture outlines are only identified when particles happen upon
them [19, 6, 10, 23].

The contributions of this research are an object-space
agent-based sampling and rendering method that analyses



an IS to identify and target feature outline locations rather
than using a repulsion based PS approach.

2. Background

Complex IS are frequently modelled using hierarchical
tree-based methods such as the BlobTree [26], which allows
arbitrary compositions of models using blending, warping
and boolean operations. Efficient data structures are essen-
tial for handling complex implicit models. It is common to
use two different structures: (1) model definition (2) visual-
isation considering rendering strategies [3, 16, 1, 21]. Ray
tracing is the most accurate method of visualising an im-
plicit surface, but it is costly [13, 3]. Polygonisation is com-
monly used for faster visualisation and is usually voxel-
based [27, 2, 21]. For faster surface visualisation and styl-
ization PS have been used [24, 19, 6, 10, 23].

Many PS for IS [19, 6, 10, 23] are based on the Witkin-
Heckbert (WH) attraction-repulsion model [24]. Particles
can be rendered directly, e.g. using discs, short strokes
[8, 19, 23] or surface texture elements [9]. Alternatively,
their path can be used, e.g. when illustrating a silhouette
[10]. Particle density can be varied, they either appear visu-
ally disconnected [24] or provide continuous coverage [9].

“Smarter” particles were developed to overcome some
of the limitations associated with basic PS. The motivation
for the smart particles (sparts) introduced in [15] is to pro-
vide a programmable tool for visualisation of scientific data.
User controlled spray cans are filled with different types of
sparts that perform different tasks. The smarticles used in
[12] were particles from [10] that used an abstract view of
a BlobTree object and were also given behaviours to place
strokes.

Cellular Texture Generation (CTG) [9] is achieved using
a PS to create patterns of geometric elements that are gen-
erated using a biologically motivated simulation, which is
based on the principles of morphogenesis. A WH style PS
is extended to include cell-cell interactions, or behaviours,
(based on Reynolds’ work [17]). Cells have an environment
and combinations of cell programs that define a cell’s be-
haviour, e.g. go to a surface, divide to cover and reaction
diffusion.

Agent based methods are commonly used in im-
age space methods. In [22] user collaboration with an ar-
tificial ant colony progressively transforms photographs
into stylised pictures. In [14] an agent based system helps
artists to express ideas. The semi-autonomous agents rep-
resent graphical elements that are combined with a balance
between artistic expression and algorithmic support. Ren-
derBots [20] are autonomous agents that represent one
stroke in one style, multiple RenderBots create an im-
age.

Figure 2. System process flow overview.

In MAS literature a blackboard [11] is a shared memory
or common area where agents are permitted to both read and
write. In a traditional blackboard system [11] a central con-
trol unit (scheduler) is an integral element. In [5], Craig in-
troduces a new interpretation of the blackboard metaphor
where control is more distributed, i.e. the agents themselves
decide which information to make available and to act upon.
Agents are also commonly used in groups to solve problems
that may be beyond the ability of one individual [25, 11].
Definition: An Implicit Surface [3] S is composed of the
set of points derived from a field function (Implicit Func-
tion) f() as: S = {p ∈ <3 : f(p) = iso} where iso is a
constant value defining the iso-surface and p = (x, y, z).
Definition: A Multi-Agent System (MAS) usually consists
of a group of computing elements (agents) in an environ-
ment. Agents have a method of collaboration that defines
them as being part of a system rather than unrelated indi-
viduals. An accepted generalisation states an agent Ag is
defined by a 4-tuple Ag = (Sit, Act,Dat, fAg), consist-
ing of situations Sit, actions Act, internal data Dat and a
decision function fAg [7]. Situations are those in which an
agent may find itself. Internal data is the set of possible val-
ues the data can have. The set of actions are those that the
agent can perform. And the decision function connects the
situation and relevant action fAg : Sit×Dat→ Act.

3. System overview

In contrast to a conventional PS, the MASSRIS approach
does not aim to cover the entire surface nor does it use re-
pulsion based distribution. Agents are given a degree of au-
tonomy that allows them to identify potential locations of
feature outlines and suitable positions for placing stipples
or strokes. A global view of the model is analysed to iden-
tify potential features, which is then used to direct agents.

The MASSRIS system uses not only the IS model (model
space) and the representation of the rendered object (ren-
dering space), but also an abstract space in between these,
described as a blackboard (blackboard space). A manager
agent (hereafter called the manager) is placed between the
IS model and the task performing agents (called agents).



The manager administers the blackboard to identify and pri-
oritise tasks, and also co-ordinate agents’ activities.

In this paper, first we concentrate on the structure of the
blackboard (Sec. 4), then we explain how the manager cre-
ates and prioritises tasks for the agents (Sec. 5). Finally we
describe the structure of the agents and their decision mak-
ing process using the blackboard and behaviours (Sec. 6).
Stippling results are shown in Sec. 7 and results showing
efficiency improvements are presented in Sec. 8.

4. Blackboard Space

The blackboard space is a voxel based public repository
that is an abstract representation of the IS model space. It
contains the results of agents’ examination and exploration
of the model space. Some of these results are used to cre-
ate the final image, i.e. feature outline traces and surface
marks (stipples and strokes), whilst others are not rendered
i.e. agent exploration results. Thus, rendering space can be
seen as a subspace of blackboard space.

Figure 3. (a) The initial rough polygonisation of
the pear. (b) Polygon vertices and approximations
to feature lines. (c) Traced feature lines.

The manager initialises the blackboard with data from a
low resolution polygonisation that has been examined by a
team of agents to identify potential feature outline locations
(Fig. 3). Each polygon edge is examined for crossing a sil-
houette edge, a discontinuity (or small scale detail) and for
changes in the sign of the curvature (convex to concave and
vice versa). Linear interpolation is used for a fast approxi-
mation to the feature outline location.

Using the polygon vertices as initial positions for agents
(Fig. 3 b) provides sufficient coverage (both in terms of area
and density) of the surface. Note that when particles in pre-
vious systems reach equilibrium they are, by nature of the
algorithm, regularly spaced. Therefore, the regularity of the
polygon vertices does not introduce a new problem.

The polygonisation is, in general, not fine enough to
guarantee that all features are found; e.g. in Fig. 3 a and b
the stalk of the pear has not been identified. Neither does it

provide enough information about the voxels to be a defini-
tive representation of the model; e.g. in Fig. 3 b the bite
from the pear, a discontinuous region, is not accurately il-
lustrated. Using a low resolution polygonisation is, how-
ever, a faster method of achieving a good surface coverage
and identifying potential feature locations than using a WH
style attractor-repulsion method (see Sec. 8 for timing re-
sults).

During runs of the system, the blackboard is updated
with results from agents performing tasks. More accurate
feature outline traces (referencing the model space) replace
the approximations from the initialisation (polygonisation)
stage (Fig. 3 c). Assumptions made about the contents of a
voxel, and therefore about the behaviour of that part of the
surface can not be guaranteed. Small scale details may be
missed due to the sampling frequency. As more information
is accumulated from agent samples, assumptions are up-
dated and refined using newly calculated statistics. More in-
formation means better sampling which gives a better like-
lihood of identifying details (Fig. 3 c).

The information stored in each voxel includes the
integer-triple voxel identifier (back bottom left corner), and
its real-valued co-ordinate (x, y, z). Samples (field func-
tion, gradient, mean and Gaussian curvature, and principal
directions of curvature) and statistics of samples (aver-
age, range and standard deviation) are stored for each
corner, polygon vertex and agent path step.

In most tasks, agents are constrained to the region close
to the surface of the object, therefore, only surface voxels
(and potentially their neighbours) are stored. The relevant
voxels are stored using a hash table (with buckets) with the
voxel identifier used as the key [27]. A complete list of sur-
face voxels can not always be guaranteed. Where the list is
incomplete agents can identify other voxels through explo-
ration.

5. The Manager

Figure 4. The manager agent overview.

The manager agent is responsible for administer-
ing the blackboard and interpreting user requests into
prioritised tasks that are assigned to agents for comple-
tion. The manger, therefore acts as an interpreter be-



User requests Agent tasks
Trace feature outlines Trace feature outlines
Create a single stroke Create a rendering path
Place strokes Create rendering paths
Find features (more detail) Explore a region
in a region Identify features or

points on a feature outline

Table 1. User requests and associated tasks.

tween the model, blackboard and rendering spaces. When
agents change voxels or complete tasks, they report all rel-
evant path sample information to the manager for inclusion
in the blackboard. Agents indicate whether data they re-
port is relevant to rendering or exploration (not constrained
to the surface). The manager interprets this, thereby cre-
ating the rendering space as a subset of the blackboard
space.

5.1. User Requests and Task Identification

Tasks are central to the MASSRIS system. Table 1 de-
scribes the relationship the manager assumes between user
requests and agent tasks. A single user request can fire mul-
tiple tasks, e.g. the user selects to create more detail in a re-
gion, the manager requests a team of agents explore the re-
gion (blackboard space), which will also identify and trace
any feature outlines found (rendering space), and report
back to the manager with data for the blackboard.

5.2. Task Priorities

Agents are capable of performing many tasks, at most
points in time there are a number of tasks to be performed.
If there are only a limited number of agents, e.g. one agent
per available processor, then the order of task performance
must be decided. The manager agent makes this decision by
maintaining one or more task priority lists.

Priorities are calculated, and respectively updated, for
voxels identified to be affected by the completion of a task
by an agent (neighbourhood). For example when tracing
the bite (discontinuous region) in the pear (Fig. 3), all of
the voxels identified to contain part of the feature outline
are evaluated and given a priority rating. Task priorities are
calculated in blackboard space using estimates of workload
and workdone. The estimates use field function and gradi-
ent values for voxel corners and agent path steps.

5.2.1. Workload Workload is estimated in reference to
the perceived size and behaviour of the surface inside a

voxel. Surface voxels are identified using corner and sam-
ple information, i.e. where the voxel contains field function
values both above and below iso. In general, surface vox-
els can be identified by examining their corners. The num-
ber of corners inside the surface can be used to represent the
approximate size of the surface inside the voxel. The vari-
ance of the angles between corner gradients can estimate
the behaviour of the surface, i.e. if it contains a disconti-
nuity, small scale detail, or is relatively smooth, see Fig. 5.
Surface voxels can also be identified by agent samples.

Figure 5. Voxel corners are inside (red) or out-
side (blue) the surface. Field function and gradi-
ents can identify, e.g.: (a) a small part of the sur-
face, (b & c) a larger smooth area, (d) a discontinu-
ity or small scale detail.

The number of corners inside the surface provides the
first step in estimating the workload wlc for a voxel. If the
number of corners inside the surface is either 1 or 7 then
wlc ≡ 0.25, [2 or 6]: wlc ≡ 0.5, [3 or 5]: wlc ≡ 0.75, 4:
wlc ≡ 1.00. If a voxel does not have any corners inside the
surface and at least one sample has identified part of the sur-
face, the value of wlc is set to 0.25, i.e. it is assumed to con-
tain a relatively small part of the surface, which is accept-
able as the polygonisation has not identified the voxel.

The perceived behaviour of the surface in the voxel is
the second means of estimating workload. If the angle be-
tween gradients is relatively small then it can be assumed
the surface in the voxel is relatively flat (Fig. 5 (a) to (c)).
Where the angle between the gradients is divergent (Fig.
5 (d)), this identifies a potential feature or detailed part of
the surface. The second estimate used to calculate work-
load wlg therefore uses (normalised) gradient information :
wlg =

(
θi

Θmax

)
where θi is the maximum angle between

gradients in voxel i, and Θmax is the maximum angle in all
neighbourhood voxels.



The last workload calculation uses the normalised (user
specified) Level Of Detail (LOD): 0 ≤ wld ≤ 1.

These three values are summed to provide the total work-
load estimate wli for each voxel i:

wli =
(

wlci + wlgi + wldi
wlcmax + wlgmax + wldmax

)
(1)

where wlcmax, wlgmax and wldmax are the maximum val-
ues of corners inside, gradient divergence and LOD, respec-
tively, for the neighbourhood.

5.2.2. Workdone Workdone is estimated using tallies of
the number of samples and feature outline points identified.
The number of samples wdi can identify whether a voxel
has been well sampled (relative to the neighbourhood) or re-
quires further investigation. The workdone sample-estimate
wd

′

i is normalised: wd
′

i = wdi
wdmax

where wdmax is the max-
imum number of samples in the neighbourhood.

An important piece of information is whether a feature
has been identified in the voxel. In order to calculate the
workdone for each feature found the following heuristic is
used: wdg =

(
wlg
i

2µi

)
where µi is the number of feature

points in the voxel i (or the number of steps on the trace’s
path).

This is used to modify the results from Eq. 1, so that:

wl
′

i =
(

wlci + wdg + wldi
wlcmax + wlgmax + wldmax

)
(2)

.

5.2.3. Priority To calculate the final priority rating, P , the
workload, wli, must be offset against the workdone, wdi:

P i = wli − (wl
′

i ∗ wd
′

i) (3)

This gives each voxel a priority rating that identifies
where agent activity should be applied first.

6. Task Performing Agents

An agent is an extension of a particle with added abili-
ties that allows it to act autonomously in reaction to its sit-
uation. Although agents are aware of their neighbours their
movements are not dictated by others i.e. they do not rely
on a repulsion distribution method, they are self motivated.
Agents are designed to perform tasks by referencing accu-
rate sample data from the model space rather than a polyg-
onal approximation. When an agent changes voxels or fin-
ishes a task, it reports any relevant information (path his-
tory sample data) to the manager. If the task is to create
paths for strokes, this information will also be used for ren-
dering. Otherwise, the task is exploratory so the data will
remain solely in blackboard space.

In this research, the actions available to an agent are
move, stop, report, and identify feature point. When an
agent moves it references the model space to determine the
sample information at its new position. At voxel change or
task completion the agent updates its personal current-voxel
path history to the manager for inclusion in the blackboard
space.

A situation is defined by what an agent can see i.e. its
view of the blackboard and model spaces and who it can
see, i.e. any teammates (only for tasks which need a team).

An agent’s Internal Data Values (IDV) include its history,
assigned behaviour attributes, and team and task identifica-
tion. Behaviour attributes are position and velocity, steering
direction calculation method (e.g. normal · viewV ector to
follow the silhouette), visibility of the agent’s actions (i.e.
include results in rendering space) and termination criteria,
see below for a description of the behaviours.

The decision function fAg relates the situation and IDV
to the action to be performed e.g., if the task is to explore
and the termination criteria have not been met, then fAg will
first select the move action, and then compute the parame-
ters that define the exact move using data from IDV and ref-
erencing the model space.

Teams and Behaviours :
Teams of agents are used to complete certain tasks,

e.g. Dual Tracking a discontinuity outline [10], or flocking
strokes [12]. Agents query team members properties (e.g.
position and velocity) through the manager.

Agents use behaviours to perform actions that complete
tasks. These behaviours include: polygon processing; steer-
ing and flocking; finding feature points; and tracing feature
outlines. An agent can be influenced by more than a single
behaviour. The behaviours that are active in an agent mostly
influence the move action and they determine if the conse-
quences of an action are only realised in blackboard space
or also in rendering space.

The polygon processing behaviour is used to analyse the
initial polygonisation to determine if a feature outline has
been crossed. Feature outlines identified include silhouettes,
discontinuities (or abrupt blends) and changes in the sign of
curvature.

Steering behaviours determine how a particle moves
and when it stops. Steering behaviours are inspired by
Reynolds’ steer, wander, flow field following and path fol-
lowing behaviours [18]. Stopping a particle is inspired in
part by Reynolds’ containment and arrival behaviours [18].

Agents can identify feature points in a similar manner
as basic particles: they examine their current and previous
step to identify if a feature outline has been crossed [10].
They do not rely, however, on a chance encounter and ac-
tively seek out a region that potentially contains a feature
outline location.



Agents trace feature outlines using a similar numerical
integration predictor-corrector method as previous methods
[4, 10]. The main difference is that the next step direction
(move) is calculated by the agent itself as its steering direc-
tion.

7. Rendering

Rendering space is a subspace of blackboard space, the
manager interprets agents’ paths to determine its contents.
The user also has a degree of control over the visibility of
the path steps or strokes used in the rendering.

Figure 6. (a) Dyed with wander behaviour
stipples. (b): Stipples on the heart model.

Short strokes similar to those presented in [10] and long
strokes based on those from [12] are both available with the
MASSRIS system. Short general surface strokes (curved
and straight) are created using the original polygonisation
to identify the center of the polygon and the center of the
stroke. Methods similar to those in [10] are used for calcu-
lating lighting and stroke visibility. Longer agent paths are
placed using behaviours in user specified regions.

Stippling effects can be produced by only drawing step
points (or a subset) from agent paths. Most of the paths are
regular (by nature) and appear as dotted lines, the wander
behaviour, however, creates paths that are indiscernible and
are used to create stipples or short strokes see Figs 1 and 6.

8. Results

Although WH [24] used a particle based method for fast
visualisation of IS the models they use are relatively sim-
ple, i.e. they use only a few primitives. The method used
in CTG [9] is extremely slow (in the manner of hours) for
large datasets. In more current research, the PS described
in [23] by Su and Hart also uses only simple implicit mod-
els with few primitives, or a Steiner surface that is defined
by only one quadratic equation. There is very little relevant
material in the current literature dealing with complex im-
plicit models, which makes comparison with other meth-
ods difficult, therefore the results of this research are com-

pared to previous systems described in [10] and [12], here-
after called NPRBT.

The BlobTree models used in Fig. 7 have many nodes:
the shell has 1497, the train has 723 and the heart has 76.
Rendering times (using the NPRBT) for the shell and the
train frequently exceed 10 minutes. The BlobTree evalua-
tions are therefore a major bottleneck in rendering the ob-
jects.

Fig. 7 illustrates the increase in speed of automatic visu-
alisation of feature outlines. A similar pattern emerges for
all models: the MASSRIS system uses a larger number of
operations in the pre-processing stage, and fewer iterations
for exploration and outline tracing, which results in faster
visualisation. Initialisation of the NPRBT uses 1000 parti-
cles randomly placed using a ray tracing method. Initialisa-
tion of the MASSRIS system involves a team of three agents
processing a low resolution polygonal mesh.

In Fig. 7 (top) the results are shown for the shell images.
The MASSRIS system uses the team of 3 agents for initiali-
sation, with the resolution of the polygonisation grid at 253.
Initialisation has a much larger number of system iterations
using MASSRIS, which enables identification of many fea-
ture locations. Both results are produced automatically and
use the default settings.

In Fig. 7 (middle) (a) to (c) the train is modelled with the
NPRBT. In (d) to (f), the MASSRIS system is used with a
voxel resolution of 153. The user selected “Trace All Fea-
ture Outlines” with 10 agents, there was no other user in-
teraction. Again we see that MASSRIS accomplishes more
feature outline identification and tracing than the NPRBT in
the same time.

Fig. 7 (lower) shows the results of the heart model. In
both cases user interaction was used to more fully identify
the feature outlines. In (b) the user increased the number
of particles to approx 2700, allowing automatic placement
of new particles, but new particles are not ideally placed
to identify outlines. Using the MASSRIS approach in (d)
(grid resolution 203) the user directed agents to the veins,
which are difficult to trace as they are not constructed using
simple smooth primitives. Using both systems many parti-
cles or agents were required to trace the vein outlines us-
ing many short strokes. Neither system was able to trace the
vein outlines using a single particle or agent.

The main difference to note regarding system iterations
concerns the method of tracing feature outlines. In the
NPRBT, when an outline has to be traced, the particle
immediately traces it to completion (either loop or lost).
The MASSRIS system, however, traces by taking one step
with each system iteration. Another important distinction
to make is that the MASSRIS system iteration count starts
from zero after initialisation. This is because the agents’
tasks are very different between the initialisation and ex-
ploration stages. This also gives a better indication of sys-



Figure 7. Automatic feature outline illustration. After initialisation. Number of system iterations for the models.

tem iterations involved in exploring the space and creating
the images. The number of iterations after the initialisation
stage is cumulative.

The final images in each sequence were created in equal
lengths of time (including initialisation) on a single ma-
chine. In most cases a single system iteration takes longer
with the MASSRIS system, but, as each movement is di-
rected towards finding a feature rather than using simple re-
pulsion, more features are identified.

9. Conclusions and Future Work

In this research, we have presented a MAS that improves
the efficiency of identifying and tracing feature outlines on a
complex implicit surface and provides an alternate method
of positioning strokes and stipples. Our technique uses a

manager to administer a blackboard space, which is used
to store and analyse data about the model space in order to
create a rendering space. Our experiments showed that the
efficiency is improved over previous approaches, and the
method of placing general surface strokes is facilitated by
the pre-processing stage of a low resolution polygonisation
of the implicit object. The method of creating stipple pat-
terns using a wander steering behaviour also expands the
palette of previous pen-and-ink style renderers that use par-
ticles covering a surface.

The main drawback of using the initial low resolution
polygonisation for hidden line removal is that the polygoni-
sation is not an accurate approximation of the surface and at
silhouette regions artifacts are visible. Our solution to this
is to use a voxel subdivision method where polygons will be
recalculated using subdivided voxels. This will create a bet-



ter approximation to the surface locally, and also will create
polygons in regions that were missed due to the low resolu-
tion polygonal sampling.

The MASSRIS system could be adapted to use other
modelling systems or sources of data. Point Based Graphics
(PBG) are used to overcome problems associated with ren-
dering models with a high level of polygonal complexity.
Algorithms take unstructured point clouds as input and cre-
ate a continuous surface for rendering (implicit surface fit-
ting is commonly used). The MASSRIS method could be
used to analyse samples and estimate the behaviour of the
surface.

There are particular applications of the MASS-
RIS method to animation and changing topologies. Agents
could be used to sample regions of the surface that change
over time, concentrating in areas that are identified as not
being well sampled. Or, alternatively agents could be as-
signed to specific voxels and spawn exploratory teams
when the surface changes and requires further investiga-
tion.

Agents’ actions are deliberately designed to easily in-
clude more behaviours. A number of additional behaviours
have also been developed, such as agents identifying re-
gions of the surface to be coloured in a style reminiscent
of concept art. The feature outline tracing behaviours are
easily adapted to trace apparent ridges and suggestive con-
tours.

References

[1] R. Allegre, E. Galin, R. Chaine, and S. Akkouche. The hy-
bridtree: Mixing skeletal implicit surfaces, triangle meshes,
and point sets in a free-form modeling system. Graphical
Models, 68(1):42–64, 2006.

[2] J. Bloomenthal. Polygonization of implicit surfaces. Com-
puter Aided Geometric Design, 5:341–355, 1988.

[3] J. Bloomenthal, C. Bajaj, J. Blinn, M. Cani-Gascuel,
A. Rockwood, B. Wyvill, and G. Wyvill. Introduction to Im-
plicit Surfaces. Morgan Kaufmann Publishers Inc., 1997.

[4] D. Bremer and J. Hughes. Rapid approximate silhouette ren-
dering of implicit surfaces. In Proc. of Implicit Surfaces ’98,
pages 155–164, 1998.

[5] I. Craig. A new interpretation of the blackboard architec-
ture, technical report 254 dept computer science, university
of warwick, 1993.

[6] P. Crossno and E. Angel. Isosurface extraction using particle
systems. In Proc. of Visualization ’97, pages 495–ff., 1997.

[7] J. Denzinger and J. Hamdan. Improving observation-
based modeling of other agents using tentative stereotyp-
ing and compactification through kd-tree structuring. Web
Intelligence and Agent Systems: An International Journal,
4(3):255–270, 1999.

[8] G. Elber. Line art illustrations of parametric and implicit
forms. IEEE Transactions on Visualization and Computer
Graphics, 4(1):71–81, Jan. 1998.

[9] K. Fleischer, D. Laidlaw, B. Currin, and A. Barr. Cellular
texture generation. In Proc. of SIGGRAPH ’95, pages 239–
248, New York, NY, USA, 1995. ACM.

[10] K. Foster, P. Jepp, B. Wyvill, M. Sousa, C. Galbraith, and
J. Jorge. Pen-and-ink for blobtree implicit models. Com-
puter Graphics Forum (EG ’05), 24(3):267–276, 2005.

[11] B. Hayes-Roth. A blackboard architecture for control. Arti-
ficial Intelligence, 26:251–321, 1985.

[12] P. Jepp, B. Wyvill, and M. C. Sousa. Smarticles for Sam-
pling and Rendering Implicit Models. In Theory and Prac-
tice of Computer Graphics, Eurographics UK Chapter Proc.
(EGUK ’06), pages 39–46, 2006.

[13] D. Kalra and A. H. Barr. Guaranteed ray intersections with
implicit surfaces. In Proc. of SIGGRAPH ’89, pages 297–
306, 1989.

[14] K. Mason, J. Denzinger, and S. Carpendale. Negotiating
gestalt: Artistic expression and coalition formation in mul-
tiagent systems. In Proc. of 3rd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS ’04), pages 1350–1351, 2004.

[15] A. Pang and K. Smith. Spray rendering: visualization using
smart particles. In VIS ’93: Proceedings of the 4th confer-
ence on Visualization, pages 283–290, 1993.

[16] A. Pasko and V. Adzhiev. Function-based shape modeling:
Mathematical framework and specialized language. In Auto-
mated Deduction in Geometry, pages 132–160, 2002.

[17] C. Reynolds. Flocks, herds, and schools: A distributed be-
havioral model. In Computer Graphics, volume 21, pages
25–34, 1987.

[18] C. Reynolds. Steering behaviors for autonomous characters.
In Game Developers Conference 1999, 1999.

[19] A. Rosch, M. Ruhl, and D. Saupe. Interactive visualization
of implicit surfaces with singularities. Computer Graphics
Forum, 16(5):295–306, 1997.

[20] S. Schlechtweg, T. Germer, and T. Strothotte. RenderBots—
Multi Agent Systems for Direct Image. Computer Graphics
Forum, 24(2):137–148, 2005.

[21] R. Schmidt, B. Wyvill, and E. Galin. Interactive implicit
modeling with hierarchical spatial caching. In Proc. of Shape
Modeling and Applications, pages 104–113, 2005.

[22] Y. Semet, U. O’Reilly, and F. Durand. An interactive artifi-
cial ant approach to non-photorealistic rendering. In Genetic
and Evolutionary Computation, pages 188–200, 2004.

[23] W. Su and J. Hart. A programmable particle system frame-
work for shape modeling. In SIGGRAPH ’05 Course, page
277, 2005.

[24] A. Witkin and P. Heckbert. Using particles to sample and
control implicit surfaces. Proc. of SIGGRAPH ’94, pages
269–277, 1994.

[25] M. Wooldridge. An Introduction to MultiAgent Systems.
John Wiley & Sons, Ltd, Chichester, West Sussex, England,
2002. ISBN: 047149691X.

[26] B. Wyvill, E. Galin, and A. Guy. Extending The CSG
Tree. Warping, Blending and Boolean Operations in an Im-
plicit Surface Modeling System. Computer Graphics Forum,
18(2):149–158, June 1999.

[27] G. Wyvill, C. McPheeters, and B. Wyvill. Data structures for
soft objects. The Visual Computer, 2(4):227–234, 1986.


