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Abstract

This work proposes a simple approximation scheme for
discrete data that leads to an infinitely smooth result with-
out global optimization. It combines the flexibility of Bi-
nary Space Partitions Trees with the statistical robustness
of Smooth Transition Regression Trees. The construction
of the tree is straightforward and easily controllable, using
error-driven metrics or external constraints. Moreover, it
leads to a concise representation. Applications on synthetic
and real data, both scalar and vector-valued demonstrated
the effectiveness of this approach.

Keywords: Binary Space Partitions, Smooth Transition Re-
gression Trees, Classification and Regression Tree.

1. Introduction

Approximation of discrete data constitutes a fundamen-

tal step in modeling, analysis and visualization. It received

a lot of attentions in the last decade, and many elaborate

schemes have been devised, using techniques from opti-

mization theory to statistical modeling. However, very few

adaptive and efficient methods for such tasks combine sim-

plicity and smooth results. This work proposes a simple

approximation scheme based on Binary Space Partitioning
(BSP) and Smooth Transition Regression Trees.

The BSP space subdivision is naturally represented by a

binary tree, named BSP-Tree, and was introduced by Fuchs,

Kedem and Maylor in [8]. It is today recognized as a very

useful tool, since it is extremely simple and flexible. Binary

partitioning tree is also a very suitable statistical tool, since

it could work as a scheme to represent decision rules. In

this context, it has been widely used to classification and

regression applications through a technique called Classi-
fication and Regression Tree (CART) Analysis [3]. In the

last decades, the interest in CART analysis has increased a

lot, mainly for classification applications [11, 13]. Indeed,

regression trees are very simple to interpret and to model: it

subdivides the input space into a set of rectangles and fits a

constant in each one.

However, in CART models, finding the best separation

hyperplane to fit the data in terms of least squares is compu-

tationally infeasible. In order to obtain the model quickly, a

greedy approach is generally adopted, fixing the hyperplane

always perpendicular to some canonical vector and choos-

ing the cutting point by some heuristic strategy. Thus, the

resulting binary partition tree corresponds to a variation of

the so famous KD-Tree [16].

Another CART disadvantage is that the regression func-

tion is not differentiable on the border of the rectangular

regions. To solve this problem, Rosa et al. proposed in

[5] other tree regression model that combines the CART

model with the Smooth Transition Regression (STR), which

is used in non-linear time series analysis [9]. This new tree

model, called the Smooth Transition Regression Tree (STR-

Tree), substitutes the indicator function on the CART re-

gression model by a smooth fuzzy membership function. It

has also been applied to time series analysis with multiple-

regimes [5]. However, similarly to the CART model, it re-

stricts the hyperplanes to be axis-aligned, reducing the flex-

ibility of the approximation.

Contributions In this work we propose a modification of

the STR-Tree to obtain a simple and fast approximation

scheme. It can be considered as a hierarchical plane-basis

function modeling (similarly to radial-basis functions [4]),

inheriting both the flexibility of BSP and the smoothness of

STR-Trees. Moreover, it does not require global optimiza-

tion while being infinitely smooth. The tree construction

is easily controllable, using error-driven metrics or external

constraints, and generally leads to concise representations.

We apply this new scheme to vector field and scalar field

reconstruction from sparse data.



Paper outline. Section 2 discusses the BSP-Tree and the

CART and STR-Trees regression schemes. Section 3 intro-

duces a new method based on STR-Trees to smooth func-

tion approximations. Section 4 shows the results. And fi-

nally, section 5 concludes the work and proposes future di-

rections.

2. Previous and related works

In this section we discuss three kinds of trees related to

this work: the BSP-Tree, the CART and the STR-Tree.

2.1. Binary Space Partition Trees

The BSP technique is a simple and efficient method to

adaptively subdivide an initial given n-dimensional domain

S ⊂ R
n into convex sets in order to match the geometry

of a given set of input points. Fuchs, Kedem and Maylor

in [8] proposed the BSP-Tree representation for this kind of

space subdivision. The BSP-Tree construction is a process

that takes the initial space S and divides it into two new sub-

spaces by a hyperplane that intersects its interior. These two

new subspaces can both be partitioned by other hyperplanes

and recursively this process continues until some stop crite-

rion is achieved. For a hyperplane in n-dimensional space

we mean a (n − 1)-dimensional subspace that divides the

original space into two half-spaces. For example, in three-

dimensional spaces, the “hyperplane” is a plane and in two-

dimensional spaces it is a line. BSP-Tree should be con-

structed in such a way that the convex regions on the leaves

could capture better the information data for the points that

are inside them. And the strategy for choosing the subdivid-

ing hyperplane and the stop criteria are application depen-

dent. Figure 1 shows a BSP-Tree for a space partitioning.

BSP-Tree has been applied to hidden surface removal

[8], image processing [15, 6], solid modeling [19, 7], point-

based processing [14] and geometry compression [18, 2],

just to cite a few. A KD-tree is a specific kind of a BSP-

Figure 1. Two level BSP-Tree example.

Tree where the splitting hyperplanes are axis-aligned.

2.2. Classification and Regression Trees

In statistical learning, tree based methods generate sim-

ple and powerful models for classification and regression

[10]. The most popular tree based method is the CART

(Classification and Regression Tree) [3]. In the CART

model, the regression function consists in a sum:

f(x) =
L∑

i=1

ciI(x ∈ Ri), (1)

where ci are constants, Ri, i = 1 . . . L are the rectangular

regions obtained from the binary partitioning tree construc-

tion with axis-aligned hyperplanes, and I is an indicator

function (that is equal to 1, when the argument is true, and

is equal to 0 otherwise). In other words, the CART model

associates to each rectangular region a constant value. In

this way, the response value of the estimated function when

the point x is in the region Ri is ci. Once the rectangular

regions Ri’s are given, the best constants ci’s are just the

average of all yi in the corresponding region, when the cri-

terion is the minimization of the sum of the squared errors∑
(yi−f(xi))2. Figure 2 shows an example of an estimated

regression function, the height for each region corresponds

to the value of ci. For more details about the CART models

see [3].

Figure 2. Two level CART regression function
example.

2.3. Smooth Transition Regression Trees

The STR-Tree model, proposed by Rosa et al. in [5],

takes advantage of much of the CART structure presented

above, but substitutes the sharp splits of the CART model

by smooth splits. In the STR-Tree regression model the in-

dicator function I in equation 1 is substituted by a logistic

function, parameterized by λ > 0, b ∈ R and j = {1, ...n},

defined as:

G(x;λ, b, j) =
1

1 + e−λ(et
jx−b)

, (2)



Figure 3. G smooth transition function for dif-
ferent values of λ.

where the ej is the jth canonical vector. Consider the sim-

plest tree with two leaf nodes, then the regression function

in the STR-Tree model is written as:

f(x) = c0G(x;λ, b, j) + c1(1 − G(x;λ, b, j)).

The parameter λ controls the smoothness of the transition

from one node to the other. Figure 3 shows several exam-

ples of the G function for several values of λ.

Consider a full STR-Tree model with depth d, then the

number of leaves is L = 2d and the number of parent nodes

is
∑d−1

i=0 2i. Then, given a rectangular partition of the initial

domain, the STR-Tree regression function is defined as:

f(x) =
L∑

i=1

ciBi(x;ψ), (3)

where ψ represents all the parameters used to define the

function G for each parent node p, they are: the value of

Figure 4. Blending functions construction
based on the STR-Tree.

(a) λ = 1. (b) λ = 5. (c) λ = 10. (d) λ=100.

Figure 5. Approximations 4 samples from a
level 2 KD-Tree, for different values of λ.

λp, the split canonical direction ejp
and the value of bp. For

the case when d = 2, one can write:

B1(x;ψ) = G(x, λ1, ej1 , b1)G(x, λ2, ej2 , b2)
B2(x;ψ) = G(x, λ1, ej1 , b1)(1−G(x, λ2, ej2 , b2))
B3(x;ψ) = (1−G(x, λ1, ej1 , b1))G(x, λ3, ej3 , b3)
B4(x;ψ) = (1−G(x, λ1, ej1 , b1))(1−G(x, λ2, ej2 , b2))

where ψ = (λ1, λ2, λ3, ej1 , ej2 , ej3 , b1, b2, b3). Figure 4

illustrates how these blending functions Bi are constructed,

and Figure 5 illustrated this blending function when varying

parameter λ of G. Notice that such construction naturally

defines a partition of unity [1].

In [5] the authors propose to use a least squares approach

in order to determine the better ci that minimize the sum of

the squared residuals for all input points, once the rectangu-

lar partition of the space is given.

3. Smooth transition BSP approximations

Until now, the STR-Tree has been applied basically to

non-linear regression analysis. We propose here a modifi-

cation of those to adapt them to graphics applications. Such

modifications intend to capture better the geometry of the

input points, using application-dependent heuristics for de-

termining the split plane. Note that, with the BSP frame-

work, such plane can have arbitrary direction. This flexi-

bility on the tree allows a very simple regression function

construction. In addition, in order to accelerate the regres-

sion function evaluation, we propose the use another fuzzy

membership functions to accelerate the evaluation.

3.1. Problem description

Given a set of N points P = {x1,x2, . . . ,xN}, where

all these points are on the box [0, 1]n. Assume that each

point xi is associated with an attribute vectors yi ∈ R
m,

m ≥ 1. Let A denote the set of all attribute vectors

{y1,y2, . . . ,yN}. We would like to obtain a regression

function that describe the relationship between x and y.

3.2. The regression function

Suppose that a BSP-Tree that represents the binary space

partition of the initial domain [0, 1]n into L convex regions



(a) Data. (b) λ = 0.1. (c) λ = 1. (d) λ = 10. (e) λ=100.

Figure 6. Approximation of a mexican-hat radial function with a level 10 BSP-Tree.

R1, . . . ,RL is given. We can define the regression function

in the same manner of the STR-Tree model by substitut-

ing, on each internal node p of the tree, the directions ejp

by unitary vectors wp. In this way the fuzzy membership

functions is controlled by the distance to the corresponding

plane (wt
px − b).

G and the regression function then follow:

G(x; λp, bp,wp) =
1

1 + e−λp(wt
px−b)

,

f(x) =
L∑

i=1

ciBi(x;ψ).

Note that in our formulation, we also substitute the scalar

constant ci by a constant vector ci since we would like to

reconstruct not only scalar fields (as it is done in the CART

and STR-Tree models) but also vector fields. This function

has a nice dependence on parameter λ (see Figure 6).

In our scheme, similarly to CART, the value of ci is the

average of the yj values of the corresponding points §j in-

side the convex region Ri.

3.3. Function evaluation

To evaluate the constructed function, one has to traverse

recursively the BSP-Tree in order to build the blending

functions for each leaf node. Note that all the internal nodes

have to be traversed because of the shape of G, which is

close to zero (but not equal to) when the distance to the

plane is a large negative number and is close to one (but not

equal to) when the distance to the plane is a large positive

number.

In order to accelerate the evaluation process we propose

the use of a polynomial of degree 5 that approximates G.

Such function will be named G�, it depends on the distance

to the corresponding split plane and on the value of a pa-

rameter λ:

G�(x; λ,w,b)=

⎧⎨
⎩

0 ifd ≤ − 1
λ

1 ifd ≥ 1
λ

1
2 + 15λ

16 d− 5λ3

8 d3+ 3λ5

16 d5 otherwise

where d = wtx − b. In this way, if the point x is far from

the plane by more than 1/λ, the value of G� at this point

will be 1, as a consequence, the value of (1 − G�) at the

same point will be 0 (and vice-versa). So, the tree traversal

could stop at this node, accelerating the evaluation.

3.4. Derivatives

In several scientific simulation or graphics applications it

is necessary to compute the derivatives of the approximate

function. For example, for vector field reconstruction one

would like to compute the curl or the divergent of the field

at the given point, and for scalar field reconstruction the gra-

dient. To evaluate the derivative of the regression function

in this scheme, we have to evaluate the derivative of an av-

erage of the blending functions, which is calculus exercise.

The algorithm to do this evaluation efficiently is also based

on the BSP-Tree traversal. To do so, it recurses to compute

the vector values of both the field and its derivatives, since

they are needed for the multiplication derivation rule.

Observe that the proposed regression function is C∞ ev-

erywhere when the blending function is constructed by the

use of the G fuzzy membership function, and is C2 every-

where when the fuzzy membership function is G�.

3.5. Building the BSP-Tree

The first step in our algorithm is to find a partition of the

initial domain into convex regions by the use of a BSP-Tree.

The subdivision process relies on two criteria: how to find

the best separating hyperplane and when to stop the process

of subdivision.

Three types of heuristic criteria are generally used to

control the separation hyperplane at each level: fitting to

the input points’ distribution in the cell; adapting to the cur-

rent approximation error; or using external variables such

as global density targets.

From our experiments, we suggest to determine the sep-

arating hyperplane based on the input points: perpendicular

to the first principal component that passes to the center of



(f) Level 1. (g) Level 3. (h) Level 5. (i) Level 7. (j) Level 9.

Figure 7. Approximation of the radial function of Figure 6 with KD-Trees (top) and BSP-Trees from the
points distribution (bottom), λ = 10. The BSP trees better respects the radial nature of the function,
in particular in diagonal parts.

mass of the input points contained on the given region. An-

other criteria when the dimension of the input points x is

equal to the target vectors y is to use the hyperplane par-

allel to the average of the target vectors that passes to the

center of mass of the input points contained on the region.

Different criteria can be used to establish when to stop

the subdivision, for example: the minimum number of

points in each leaf region, the maximum level of the tree,

a maximum error tolerance on the input points, or a com-

bination of these three. In this work, we use the minimum

number of points per leaf region.

4. Results

We tested the proposed approximation in different con-

texts. First, we experimented a synthetic reconstruction

from uneven sampling with different values of λ (see Fig-

ure 6). We observe that the value λ = 10 is a reasonable

choice. We confirmed on other tests that it is a good default

value for such scalar approximations, when the domain is

mapped onto [−1, 1]2. Then, we compare our ap-

proach on scalar fields with KD-tree based techniques such

as STR-Trees on the same data set (see Figure 7 and Ta-

ble 1). We can observe the superiority of BSP that better

captures the diagonal features of the function. We further

compare our approach for vector field with quadtree-based

techniques such as multiple partition of unity implicit for

vector fields [12] (see Figure 11). On this simulated vec-

tor field, the proposed technique outperforms quadtree-local

polynomial approaches. Moreover, with the compact sup-

(a) Input field. (b) Magnitude. (c) Phase.

Figure 8. Approximation of a real vector field
from particle-image velocimetry with a level
11 BSP: the color map represents the magni-
tude of the field (λ = 11).

port proposed in Section 3.3, the evaluation is faster than

polynomial approaches: with G at level 11, the construction

took 7.310−4 seconds, against 1.210−5 for G�. We finally

tested our technique on real vector field measured from par-

ticle image velocimetry (see Figure 8), showing the stability

of the method even in the presence of noise.

To further test the possibilities of our smooth transi-

tion approximations, we compute the derivatives of recon-

structed vector fields. In particular, we experiment on a syn-

thetic vector field with six vortices and show the approx-

imate divergence and curl computed from a random sam-

pling (see Figure 9). We check that those derivatives stress

the features of the field. Furthermore, we checked the diver-

gence of the velocities obtained from a numerical fluid sim-

ulation [17], which should be close to zero (see Figure 10).

Finally, we apply our technique to curve reconstruction,

similarly to RBF techniques [4]. From a curve sampled



(a) Input samples. (b) Reconstructed field. (c) Divergence approximation. (d) Curl approximation.

Figure 9. Divergence and curl of the approximation on a synthetic vector field with six vortices, using
level 11 BSP: the vortices are clearly identified.

(a) Input samples. (b) Reconstructed field. (c) BSP with level 11. (d) Divergence approximation.

Figure 10. Divergence of a vector field from a fluid simulation, using [17] ( λ = 125): the null diver-
gence of the field is well respected.

Figure 11. Relative error of the magnitude the
field of Figure 10, for different values of λ and
comparing with [12].

with points pi and normals ni, we create two point sets

{pi − εni} and {p+ εni}, and associate them to values −1
and +1 respectively. The reconstructed distance fields are

shown in Figure 12. We can observe that the field is robust

far from the points and does recover topological features of

the curve, although the singularities almost induce spurious

components in the reconstruction.

KD-tree BSP
# leaves 11505 10809
Maximal tree level 17 16
Magnitude mean relative error 0.3860 0.3449
Phase mean relative error 0.3342 0.3207

Table 1. Comparison with KD-tree approxima-
tions on the example of Figure 7, with λ = 1.5,
error tolerance 10−3 and 11652 input samples.

5. Conclusion and future works

In this work, we introduce a smooth approximation

mechanism that does not require global optimization. It re-

lies on a combination of binary-space partition and smooth

transition regression trees, leading to a simple plane-basis

function modeling. We show results on scalar and vectorial

approximations, outperforming previous approaches. We

further demonstrate applicability in specific contexts such

as vector fields’ feature detection or curve reconstruction.

We intend to extend this work in higher dimensions,

which is straightforward in the implementation. Moreover,

we plan to further study BSP refinement criteria based on



(a) Input data. (b) BSP tree (level 11). (c) Approximation (λ = 10). (d) Approximate distance.

(e) Input data. (f) BSP tree (level 11). (g) Approximation (λ = 2.85). (h) Approximate distance.

Figure 12. Curve reconstruction from a scalar plane-based function modeling.

local, non-linear optimization. Finally, the transition pa-

rameter λ may be adjusted to each BSP interior node, which

may lead to even greater adaptation.
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