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Abstract 

 
This work compares the performances of two fast 3-D 
transforms and two adaptive Golomb entropy coders 
applied to a video codec system named FEVC (Fast 
Embedded Video Codec). The compared transforms 
are Hadamard (4x4x4 and 8x8x8) and H.264/AVC 
integer DCT (4x4x4). The compared adaptive Golomb 
entropy coders have different operation modes and 
adaptation strategies. New 3-D implementation 
methods for the transforms are presented. After the 
scan procedure, the encoding of the 3-D coefficients is 
done, bit-plane-by-bit-plane, by the entropy coders, 
producing a fully embedded output bitstream. The 
FEVC (also described here) was developed to be 
implemented each of a large number of set-top boxes 
used in a fiber optics network. For that reason, it is 
focused on reduced complexity and execution time, not 
on high compression rates. The use of meager 
computational resources is also required. Even with 
these constraints, good distortion versus rate results 
were achieved. 

 
1. Introduction 
 

The comparisons between the two fast 3-D 
transforms [1] [2] and between the two Golomb 
entropy coders [3] [4] presented here are studies to 
improve the performance of a color video codec named 
Fast Embedded Video Codec (FEVC). The new 
transform implementation method presented here is 
also applied to the codec. The FEVC was developed in 
C# language to be executed in a set-top box device 
under development. A large number of these set-top 
boxes will be the interface between a fiber optics 
network and its users. This device will receive digital 
signals, extract audio, video and data information and 
send the processed information to an output device. 
Among other functions, such as Internet accessibility 
and voice over IP, the set-top box will be able to 

receive and transmit video signals coming from, for 
example, video on demand and video conference 
applications. 

Research on video coding systems typically looks 
for techniques that can reach the highest possible 
compression rate while not exceeding a given level of 
distortion. This compression rate increase is generally 
achieved by means of increased coding complexity, 
which is supported by the availability of increasing 
computational power. However, in some video coding 
applications, the use of high capacity processors is not 
the most convenient choice. These situations require 
video codecs focused on reduced execution times and 
reduced computational complexity, and less concerned 
with high compression performance. This is the profile 
of the FEVC. Also, in some cases, the codecs are to be 
implemented by software only, as hardware 
implementations may not be admitted. 

In order to reduce the codec execution times, the 
very simple Hadamard (8x8x8 and 4x4x4) transform 
and the H.264/AVC integer DCT-like (4x4x4) 
transform are used instead of the traditional DCT. 
These transforms were chosen because they are able to 
reduce the correlation between coefficients and their 
implementations require only additions and bit shifts. 
To further reduce execution times, motion estimation 
(ME) and compensation (MC) techniques are avoided. 
This are high performance techniques but time 
consuming. Instead, 3D transforms are used to reduce 
correlation in both spatial and temporal dimensions. 

After transforming 3-D blocks of pixels, the codec 
reads and reorders each coefficients block. It was 
found that the probability distribution of the dominant 
AC coefficients is spread along the major axes of the 
3-D cubes, just as found for 3-D DCT cubes [5] [6]. It 
was also found that the cube energy is concentrated 
according to the coefficient sequency number, a 
concept related to the notion of frequency, in the three 
dimensions. To benefit from this energy distribution 
pattern, a scan order [7] based on the multiplication of 
the three sequency numbers of each coefficient is 



adopted for the coefficient reading. This deterministic 
scan order gives generally better results than the 
traditional 3-D zig-zag scan. 

The codec encodes the resulting reordered 
coefficients in a bit-plane-by-bit-plane fashion, 
refining their precision at each turn. This process 
renders a completely embedded encoded video 
bitstream. The encoding of each bit plane of the 3-D 
Hadamard coefficients is accomplished using an 
adaptive version of Golomb run length encoder. Two 
Golomb entropy coders [3] [4] were considered and 
the results obtained are presented here. 

The entire implementation is designed to perform 
only fast mathematical operations and to require little 
computational memory. All multiplications are done in 
powers of two and performed by variable bit shifts. 
Moreover, the system is completely implemented using 
16-bit integer arithmetic. 

An overview of the codec stages is provided in 
Section 2. Specifically, the fast 3-D transform 
implementations are presented in Section 2.2, the 3-D 
coefficients scan order is presented in Section 2.3 and 
the entropy coders are described in Section 2.4. 
Section 3 presents the obtained results. 
 
2. Video codec overview 
 

The FEVC structure is shown in Figure 1. The 
video codec stages are described in this section in the 
order they appear in the figure. 
 

 

Figure 1. Block diagram of the FEVC structure. 

 
2.1. Video codec color spaces 
 

The FEVC is able to read color video sequences 
stored in tri-stimulus color spaces, such as RGB and 
YUV 4:2:0. Each color signal is separately encoded 
and the allowed pixel bit-rate is divided among the 
color signals according to its significance. Then, for 
the YUV 4:2:0 sampling, approximately 10% of the 
luminance signal rate is spent on the chrominance 
signals. This simple weighted bit-rate division 
procedure helps achieving higher compression rates. 

In order to get the well-known advantages of the   
L-C (Luminance - Chrominance) formats, the FEVC 
offers the possibility to convert an original RGB video 
sequence to a different internal color space (such as 
YUV 4:2:0 and YCoCg) before beginning the coding 
process. Other color spaces are also supported and the 
conversions among them are described in [8]. 

 
2.2. Three-dimensional fast transforms 
 

Two fast transforms are supported in the FEVC: 
the Hadamard transform and the H.264/AVC integer 
DCT-like transform. These transforms are applied in a 
three-dimensional fashion. The video sequence being 
encoded is partitioned into cubes and the transform is 
separately applied to each cube dimension per 
dimension (first to columns, then to lines and finally to 
frames). 

To evaluate the cube's size effect in coding 
performance, the FEVC is executed with cubes of 
4x4x4 or 8x8x8 sizes for the Hadamard transform and 
only with cubes of 4x4x4 size for the H.264/AVC 
integer DCT-like transform. The 8x8x8 cube was not 
implemented for this transform because of its matrix 
higher complexity [9]. 

These transforms were chosen because they can be 
computed exactly in integer arithmetic, thus avoiding 
inverse transform mismatch problems. Furthermore, 
only additions and bit shifts are necessary, thus 
minimizing computational complexity. 

Although the use of the 3-D Hadamard presents no 
innovation, this transform was chosen because it has 
the simplest basis functions (composed only of +1 and 
−1 elements), it is identical to its inverse, and it is easy 
to extend results to larger transforms. As an example, 
the NxN Hadamard matrix Hn (where N = 2n , for some 
integer n) for N = 8 is 
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The Hadamard transform fast calculation method to 
be used in the FEVC is based on the fact that the Hn 
matrix can be written as a product of N sparse matrices 
H~  [1]. In this method, the total number of operations 
is of the order of N * log2 N. 
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The H.264/AVC integer DCT-like transform [2] is 
also a very simple transform as shown by its matrix H2 
in Eq. (2). The H2 is not symmetric, and the inverse 

transform INVH
~

 is also shown in Eq. (2). The 
multiplications by ½ are implemented by 1-bit right 
shifts. 
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Here INVH
~

 is related to the inverse of H, so that 
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2.2.1. Dynamic range gain. As the full 
implementation with 16-bit integer arithmetic is a 
FEVC prerequisite, the 3-D transform dynamic range 
gain was adjusted to avoid loss of data. 

The Hadamard matrix is composed only of +1 and 
−1 values, and the one-dimensional transform has a 
dynamic range gain of N / N = N . If N = 8, for 
instance, the dynamic range gain is 8 . This division 
by N  (as in Eq. (1)) is done in each cube dimension 
to preserve the signal energy in the transform domain. 
For a three-dimensional transform, the total dynamic 
range gain is 83 / ( 8 )3 =8* 8 . 

In order to avoid fractional coefficients (generated 
by the N  divisions) and the square root operation, 
and to reduce the coefficient magnitudes on the three 
Hadamard transform calculations, we modified the 
calculation order in the FEVC [7]. In this modified 
implementation, the divisions are grouped in a special 
way, the first decoding division by N  is carried out at 
the encoder and the total dynamic range gain becomes 
83 / ( 8 )4 = 8, requiring only 3 additional bits to store 
the transform coefficients than to store the pixel 
values. This analysis for N = 8 is sufficient for the 
Hadamard transform because the maximum supported 
cube size in the FEVC is 8x8x8. 

For the integer DCT, the maximum sum of absolute 
values in any row of H2 in Eq. (2) equals 6, so the 
maximum dynamic range gain increase for a 3-D 
transform is log2 (63) = 7.75, requiring 8 additional bits 
to store the transform coefficients. 

Because of these additional 8 bits in the coefficient 
values, the FEVC performance with the integer DCT 
was not as satisfactory when compared to the 

performance with the Hadamard transform. The reason 
was that as much as 16 bit planes could have to be 
entropy encoded with the integer DCT, while only a 
maximum of 11 bit planes have to be encoded in the 
Hadamard transform case. 

In order to control the 3-D integer DCT dynamic 
range gain, a modified calculation was used, in which a 
scaling factor of ¼ was extracted from the inverse 
transform, as shown in Eq. (3). Then, since the inverse 
transform is applied three times, two of the scaling 
factors were grouped, and applied at the end of the 
coding process, as 4-bit right shifts. Finally, the last 
scaling factor was implemented at the end of the 
decoding process by 2-bit right shifts. 

When the scaling factors were applied together at 
the end or during the coding/decoding process, the 
coefficient values became too small and lost precision. 
With the modified computation method, enough 
coefficient precision could be preserved and the 
number of additional bits needed to store the 
coefficient values was reduced by 4, resulting in a 
maximum of 12 bit planes being entropy encoded. 
 
2.2.2. Transform coding gain. From a compression 
standpoint, for a stationary Gauss-Markov input with 
correlation coefficient ρ = 0.9, the one-dimensional 
transform coding gain of the DCT is 5.387 dB, of H2 in 
Eq. (2) is 5.376 dB [2] and of H3  in Eq. (1) is 5.034 
dB. As the transforms are applied in three-dimensional 
fashion and, in practice, the empirical correlation 
coefficients tend to be in the neighborhood of 0.9, the 
Hadamard and integer DCT performances can be quite 
comparable. This can be seen in Section 3, where the 
results for both transforms with different video 
sequences are presented. 
 
2.2.3. Energy concentration. The DCT provides 
better energy concentration than the Hadamard 
transform. This DCT advantage can also be perceived 
when the transforms are applied in cubes [5] [6], as 
depicted in Figure 2. The reason is that in the 
Hadamard matrix, the row vectors are not sequency 
ordered, as shown in Eq. (1) by the column named 
“Sequency”. The sequency number is the number of 
transitions (zero crossings) in the Hadamard transform 
basis vector. This is similar to the concept of 
frequency, defined for sinusoidal signals in terms of 
zero crossings. 

Thus, a special scan order, presented in Section 2.3, 
was developed for the cube reading. The Hadamard 
matrix cannot be reordered before the transformation 
process because, in this way, the fast implementation 
using the product of sparse matrices could not be 
applied. Therefore, for the Hadamard cube, the 



sequency numbers are assigned to real cube 
coordinates during the scan process. 

 

  
 

Figure 2. Coefficients energy distribution in                    
(a) Hadamard and in (b) DCT cubes. 

 

2.3. Coefficients scan order 
 

With the energy concentration achieved by the 3-D 
transform, the cube's energy is not any more spread 
among its values and becomes concentrated in some 
cube coefficients, as shown in Figure 2. The cube 
coefficient reading in a decreasing (or “decreasing in 
the average”) order is important because it increases 
the entropy coding efficiency and produces a 
progressive (embedded) encoder.   

To determine an efficient and fixed reading order 
(independent of the cube's information content), such 
that the coefficients with higher energy values tend to 
be scanned first, we take into account the three 
sequency numbers of the coefficients (one in each 
dimension), each incremented by one (to avoid the 
zeros). We order the product of the three incremented 
sequency numbers. Also, we explore the correlation 
between coefficients of adjacent cubes located in the 
same position through a spiral curve reading of 
coefficients. This scan method is presented in [7]. The 
multiplication values are obtained just once, at the 
beginning of the coding process (according to the cube 
size chosen), and associated with all the three 
incremented sequency numbers of possible 
combinations that multiply to the same value.  

The product of incremented sequency numbers is 
motivated by the observation that the regions of equal 
coefficient energy tend to be shaped as hyperbolic 
surfaces [6]. 

The graph presented in Figure 3(a) corresponds to 
the “Hall Monitor” AC coefficients of the luminance 
frames in the range #264 to #271, read by a column-
line-frame scan order. Comparing this sequence with 
the one in Figure 3(b), which corresponds to the FEVC 
scan order result, one can notice that a better grouping 
of AC coefficients with similar values is in fact 
achieved. 

 

 
 

Figure 3. AC coefficients reading by (a) column-
line-frame order and in (b) FEVC’s scan order. 

 

2.4. Entropy coding 
 

Most video codecs perform quantization of the 
coefficient values before the entropy coding stage. The 
FEVC does not perform this explicit quantization and, 
thus, can be used in a lossless manner. In fact, the 
FEVC performs an implicit coefficient quantization 
because encoding is applied to bit planes, which 
generates an embedded and progressive encoded 
bitstream. Thus, decoding can be done aiming at a 
specific desired bit rate. Another possibility is to 
control the bit rate during the encoding process, 
generating the bit stream at the desired bit rate. 

The entropy coding is performed in FEVC by two 
choices of Golomb run length encoders (RLE) with 
adaptive parameter adjustment [3] [4]. The results 
comparisons between these are given in Section 3. The 
first entropy coder considered [3] uses concepts 
extracted from wavelet scalable video compression 
[10] and the  SPIHT encoder [11] and has a single 
operation mode. Letting M be the Golomb encoder run 
length parameter, the incomplete zero runs (runs of 
length M) are mapped to a one-bit codeword (“0”) and 
the complete zero runs (runs of length 0 ≤ x ≤ M – 1) 
are mapped to codewords of length ⎣ ⎦M2log , when 

⎣ ⎦ Mx M −< +1log22 ,                      (4) 
and to codewords of length ⎣ ⎦ 1log2 +M , otherwise. 

(a) 

(b) 

(a) (b)



The adaptation strategy presented in [3] adjusts the 
coder length in two situations:  

- In the middle of a run of zeros, the length 
parameter M is incremented by ⎣ ⎦2/)1( +M . 

-  After the end of the run, a new estimate of the 
average run of zeros 

__
Χ  is calculated and the 

parameter M is set to ⎣ ⎦2/)1( +X . The new 
__
Χ  

is calculated by a first-order auto-regressive 
model given by  

nnn X)1(
__

1

__
αα −+Χ=Χ + ,                (5) 

             where ]1,0[∈α is the memory factor. 
The second Golomb entropy coder considered [4] 

has four operation modes: a mode where the input 
symbol is passed uncoded to the output, a mode with a 
particular Huffman code, a mode with a Rice coder (as 
described in [3], with kM 2= ), and a “half-mode” 
code with 123 −⋅= kM . This Golomb entropy coder 
has a complexity nearly identical to that of popular 
adaptive Rice coders. However, this encoder has an 
excess rate of less than 2% with respect to the source 
entropy for binary sources with unknown statistics. 
The adaptation is based on the last N previously 
encoded strings and is done by the simple rule 

)( 0

__
1

__
nN

N
nNN +Χ⋅−←Χ⋅ ,           (6) 

where 0n  and 1n  are, respectively, the number of “0” 
symbols and the number of “1” symbols, read from the 
input to produce the output codeword. This adaptation 
rule is nearly maximum likelihood (ML) and can be 
implemented using only additions and bit shifts. 
 
3. Results 
 

In order to achieve a multi-platform code, the codec 
computational system is implemented in C# language 
within the Microsoft Visual C# .NET environment. 
The encoding and decoding processes, as well as all 
other supported operations, are controlled by the user 
through graphical interfaces [7]. 

To evaluate the FEVC computational efficiency, 
the encoding and decoding times of some video 
sequences were measured. All execution times were 
obtained with a Pentium-4 3.20 GHz processor and 
3GB of memory, running exclusively the codec. 

For comparison, we used the H.264/AVC official 
reference software obtained in [12]. Although the 
codecs are different, this performance reference is 
interesting because it is the video codec with the best 
performance nowadays. It is important to emphasize 

that there are H.264/AVC optimized implementations 
that run much faster than the official reference 
software. We chose to use the official reference 
software because this is a publicly available 
implementation and is always enabled without 
restrictions. We note that the FEVC implementation is 
also not optimized for the hardware where it is being 
executed, since C# is interpreted and a compiled code 
version was not generated. 

Most H.264/AVC parameters were set as "default", 
according to the software official manual developed by 
the Joint Video Team (JVT). The parameters not set as 
"default" are: Main profile, level 2.0, GOP of size 15, 
5 reference frames, and CABAC entropy coding. 

Fig. 4 presents the PSNR versus bit-rate curves 
obtained with H.264/AVC and FEVC for three QCIF 
video sequences in the YUV 4:2:0 format, with 
different motion and background characteristics. 
Approximately 300 frames of each sequence were 
used. One can notice that the Hadamard 8x8x8 
transform has superior performance when compared to 
the integer DCT 4x4x4 for sequences with high spatial 
and temporal correlations, as the “Hall Monitor” 
sequence (Figure 4 (a)). For the “Akiyo” sequence 
(Figure 4(b)), which also presents high temporal 
redundancy but has more color variations, the 
transforms performances are more similar. The 
comparison between the 4x4x4 transforms shows that 
the integer DCT is slightly better than the Hadamard, 
which is expected due to the greater transform coding 
gains, as discussed in Section 2.2.2. The coding and 
decoding times shown in Table 1 indicate that the 
integer DCT 4x4x4 is faster than the Hadamard 4x4x4 
transform. This difference is due to the DCT simpler 
scan order, since the transforms complexities are 
comparable. For the “Foreman” sequence, which has 
significant motion content, the transform results are 
very similar, as shown in Figure 4(c). 

It is shown in Fig. 4, that the FEVC uses 
approximately 3 times the bit rate of H.264 for the 
luminance signals. This rate-distortion result can be  
justified in applications where high capacity is 
available (as in optical links). It is also noticed that this 
difference in codecs performance is inferior in the 
chrominance signals for sequences with less color 
variations (“Hall Monitor” and “Foreman”). 

Fig. 5 shows that the Golomb adaptive entropy 
coders [3] [4] described in Section 2.4 have similar 
performances when the parameters are well adjusted. 
The two entropy coders are only applied to the most 
significant bit plane of each coefficient because the 
other bits (after the first most significant bit “1”) of 
each coefficient present an approximately uniform 
distribution, and are thus left uncoded. 



 

 

 

Figure 4. PSNR versus bit-rate curves for luminance and chrominance signals of the                                                   
(a) “Hall Monitor” sequence, (b) “Akiyo” sequence, and (c) “Foreman” sequence.

Table 1. Encoding and decoding times for            
"Akiyo" sequence. 

 

 

In fact, when the entropy coders were also applied 
to the least significant bit planes, the differences in 
terms of encoding times and PSNR versus bit rate 
curves were negligible, as shown in Fig. 5. The entropy 
coder in [3] has a fast adaptation strategy that is well 
adjusted to non-stationary data, just as the bit planes 
values of the video data. It uses an empirical adaptation 
strategy. On the other hand, the entropy coder in [4] was 
originally designed to adapt to i.i.d. Bernoulli data with 
slowly varying statistics. By making the backward 
adaptation buffer size as small as N=2, the reasonable 
performance shown in Fig. 5 was achieved. This 
indicates that the speed of adaptation is more important 
than the precision of the data statistical analysis. 

(a) 

(b) 

(c) 



 
Figure 5. PSNR versus bit-rate curves of the 

luminance signal of “Hall Monitor” using                    
(a) Golomb’s RLE [3], (b) Golomb’s RLE [3] with 

least significant bit planes coded and (c) Golomb’s 
RLE [4] with least significant bit planes coded. 

 

Visual quality comparisons with the H.264 standard 
are presented in Figs. 6, 7, and 8. As expected, due to 
the curves shown in Fig. 4, the lowest bit rates are 
obtained with the sequences “Hall Monitor” and 
“Akiyo”, possibly because they have more spatial and 
temporal redundancies. Also, as expected from these 
curves, when compared at the same bit rate, the 
performance of the Hadamard 8x8x8 transform is very 
similar to the integer DCT 4x4x4 performance for the 
“Foreman” sequence (Figs. 8(c) and 8(d)), and slightly 
superior in the chrominance signals coding for the 
“Akiyo” sequence (Figs. 7(c) and 7(d), respectively). 

We note that the FEVC visual performance can be 
considered satisfactory for highly compressed pictures. 
In Fig. 6(b), the bit rate is 0.12 bit/pixel (which implies 
a compression by a factor of 100). The same good 
performance is shown in Figs. 7(c) and 8(c). 
 

  
 

 
Figure 6. "Hall Monitor" frame #264 encoded by     

(a) H.264 at 0.12 bit/pixel and by FEVC (Hadamard 
8x8x8) at (b) 0.12 bit/pixel, and at (c) 0.33 bit/pixel. 

  
 

  
 

Figure 7. "Akiyo" frame #160 encoded by (a) H.264 at 
0.16 bit/pixel, by FEVC (Hadamard 8x8x8) at (b) 0.16 

bit/pixel and at (c) 0.30 bit/pixel, and by                               
(d) FEVC (Integer DCT 4x4x4) at 0.30 bit/pixel. 

 

  
 

  
Figure 8. "Foreman" frame #128 encoded by (a) 

H.264 at 0.25 bit/pixel, by FEVC (Hadamard 8x8x8) at 
(b) 0.25 bit/pixel and at (c) 0.55 bit/pixel, and by                       
(d) FEVC (Integer DCT 4x4x4) at 0.55 bit/pixel. 

Table 2. Encoding and decoding times for the "Hall 
Monitor" sequence with (b) and (c) as in Fig. 5. 
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The encoding and decoding times of H.264/AVC 
and FEVC (measured at the same bit rates) are shown 
in Table 2. Although the two FEVC entropy coders had 
similar performances, as shown in Fig. 5, Table 2 
shows that the entropy coder in [3] is approximately 4 
times faster than the entropy coder in [4]. The main 
bottleneck of the entropy coder in [4] is the frequent 
change of operation mode. 

Based on Table 2, it is clear that the FEVC (b) is 
considerably faster than the H.264/AVC official 
reference software, being approximately 180 times 
faster in encoding and 8 times faster in decoding. As 
the FEVC is a symmetric codec, the encoding and 
decoding times are almost equal, unlike H.264/AVC, 
where the decoding is 23 times faster, in average. 

The H.264/AVC codec requires 2,855.75 ms per 
frame for encoding at 0.12 bit/pixel. The FEVC 
requires 17.51 ms per frame for encoding at 0.33 
bit/pixel, which produces frames with comparable 
visual quality to those of the H.264/AVC, as shown in 
Fig. 6(c). Thus, we can be conclude that, at the cost of 
reducing the H.264/AVC compression rate by a factor 
of about 2.75, a significantly faster encoding can be 
achieved with the FEVC. We also note that, with 
encoding times of 17.51 ms per frame, it is possible to 
have real time video sequences encoded by software 
with the FEVC, at 30 fps. 
 
4. Conclusions 
 

We presented a comparison of two fast three-
dimensional transforms and two entropy coders applied 
to a codec named FEVC. New implementations were 
proposed in order to have 16-bit integer  
implementation and to ensure fast and simple 
operations (using only additions and bit shifts). 

For high bit rate applications (around 0.9 bpp), the 
PSNR degradation with respect to H.264 is less 
pronounced (around 3 dB for sequences with high 
spatial and temporal correlations) than for low bit rate 
applications (around 0.1 bpp), where this degradation 
may be in excess of 6 dB. 

The use of the FEVC is best directed to video 
streaming and video conferencing, and systems with 
complexity and storage limitations, possibly using fixed 
point processors, but enjoying high bit rate network 
connections (low cost codecs making use of high 
performance links). An added advantage is the 
exception of intellectual property restrictions. 

The performance results for the video sequences 
shown indicates that, at the cost of a reduction in 
H.264/AVC compression rate by a factor of 2 to 3, it is 
possible to get encoding times that are significantly 
smaller (around 160 times) with the FEVC. 
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