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Abstract 
 

The use of optical flow techniques to extract the 
velocity from the cardiac movement has to take into 
account the computational inaccuracy raised from the 
derivative operator over discrete data. This study 
presents a comparison of three different derivative 
approaches (two based on linear and other based on 
non-linear filtering) to find out the best solution. 
Results of the experiments are compared using a 
structural distortion based image quality metric. 
 
 

1. Introduction 
 

The diagnosis quality of cardiac diseases has a 
potential to be improved by extracting quantitative 
information from 3D image sequences of the heart. 

Given the cardiac movements, a possible approach 
to estimate their velocity components for each voxel is 
the optical flow technique [1], and here extended for a 
3D space. However, a critical problem to obtain this 
estimation lies in the fact that this process depends on 
derivative approximations from discrete data. 

This work performs a comparison of three 
different approaches for calculation of image 
derivatives in the presence of different noise levels, 
applied to a simplified and well-controlled 
mathematical model. The aim is to determine which 
approach estimates the derivatives more accurately in 
the presence of noise. 
 

2. Methodology 
 

The first method, named “Traditional Derivative”, 
follows the steps usually performed to calculate partial 
derivatives of noisy data: the noisy image is convolved 

with a Gaussian filter, followed by the application of a 
partial derivative operator [2]. 

The second method, named “Gaussian Derivative”, 
is based on linear scale-space theory applied to discrete 
data: partial derivatives of a rescaled image can be 
obtained by the convolution of the original image with 
the corresponding derivatives of the Gaussian function 
[3]. 

Both methods tend to create very smooth flow 
fields and can reduce the precision of the velocity 
estimation. In the third method, the anisotropic 
diffusion filter proposed by Perona and Malik [4] was 
applied prior to the derivative operation. The main 
objective of using this non-linear smoothing filter is to 
preserve edges, so possible abrupt flow discontinuities 
may be preserved during the estimation process. 

All filters and differential operators were 
implemented using the libraries of the open-source 
software system Insight Toolkit (ITK) [5]. 

 

3. Experiments 
 
The experiments were performed using an image 

of a cube, which consisted of 10x10x10 voxels in a 
volume with spatial resolution of 64x64x64 voxels. 
This cube moved along all directions (X, Y, and Z) 
resulting in a sequence of 16 frames. The intensities of 
the image were 138 in the cube and 10 in the 
background. The original volume was corrupted by 
either Poisson or Gaussian noise with three different 
intensities: high, medium, or low. Poisson noise level is 
defined as the square root of the voxel count. In the 
present experiment, the noise levels were: 3 for the 
background and 12 for the cube. The Gaussian noise 
level was measured by the contrast-to-noise ratio 
(CNR) [2]. The CNR for the three levels of Gaussian 
noise were: 26 (low), 14 (medium), and 7 (high). 



Let A be the ideal derivative image obtained from 
the application of the partial derivative operator on X, 
Y, Z, or T direction to the original noiseless volume. 
The three derivative approaches were applied in each 
direction to the noisy volumes resulting in a set of 
images (image B) that were compared to A. These 
comparisons were evaluated through a structural 
distortion based image quality measurement proposed 
by Wang et al. [6]: 
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where: I  represents the average of all voxels of the 

image I, 
2

Is  is the variance of I, and ABs  is the 

covariance between A and B. 
This equation models any distortion as a 

combination of three different factors: loss of 
correlation, mean and variance distortion between 
images A and B. The range of Q is [-1, 1] and the best 
value 1 is achieved when Ai

 
= Bi for every voxel i [6]. 

Figure 1 shows two chart samples obtained in the 
experiments for the proposed quality index. The curves 
for all other charts, including other partial derivatives 
and noise intensities, present similar behaviors. 

 

 
       (a)            (b) 

Figure 1: Quality index vs. (a) σσσσ for two linear 
approaches or (b) number of iterations for 
non-linear approach referred to partial 
derivative in X, translation in the X direction, 
and in the presence of Poisson noise. 

 
There are no noticeable differences between the 

application of Traditional and Gaussian Derivative 
methods (Figure 1a). Q is maximized for a determined 

value of σ that depends on the noise level. When 
dealing with real images of the same spatial resolution 
with unknown noise level, the results suggest that a 

value for σ around 1.4 can be tried out to optimize the 
quality of the partial derivative estimation. However, 
considering the overall experiments using Gaussian 
methods, the best result for Q is limited to, 
approximately, 50% of the ideal noiseless case. 

Better results are reached with non-linear 
anisotropic method (Figure 1b). Q tends asymptotically 
to 1 as the number of iterations increases, which means 

optimal quality or minimal distortion. For all 
experiments two filter parameters were previously set: 
the time step to 1/32 and the conductance to 9. 
According to Figure 1b, less than 10 iterations are 
enough to get better quality (over 40%) than using 
Gaussian methods. Fixing the same quality level for the 
worst tested case, observed with Gaussian high noise, 
the required number of iterations does not exceed 35. 

 

4. Conclusion 
 
In this work three methods to calculate image 

derivatives were compared by applying them to sets of 
noisy images of a simple mathematical model. The 
choice of this model was due to its simplicity that 
allows interpretation and analysis of the results. 
Despite of its simplicity, the simulated images have the 
same spatial resolution of PET or SPECT images, and 
the cube volume has the same magnitude order of the 
human heart left ventricle. 

For the experiments reported, the best performance 
among the three approaches was achieved with the 
anisotropic method. 

In the sequence of this work, which intends to 
calculate the velocity by using the optical flow 
technique, new experiments shall allow a direct 
comparison between real and the estimated velocity 
data. The aim is not only to commit to the most suitable 
methodology, but also to set the ideal range of 
parameters according to the image resolution and 
structures size. Getting the best possible precision of 
the derivative parameters will lead to finding out more 
reliable velocity field for clinical application. 
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