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Abstract

Interpolation is an image processing operation for im-
prove the resolution of a digital image. In this work, follow-
ing the orthogonality principle, and under the assumption
that the actual image is a locally stationary random pro-
cess, we propose an alternative scheme for image interpola-
tion. In our approach, the computational complexity is sim-
ilar to the first-order spline algorithm. The algorithm was
compared with classical B-spline methods and also with a
statistical interpolator previously proposed in the literature.
According to the normalized mean square error criteria, the
proposed method produced accurate results.

1. Introduction

Interpolation is an important image processing operation
which can be applied from resolution enhancement on desk-
top printers to algorithms for high resolution image recon-
struction [1, 6]. A review of the interpolation problem can
be find in references [1] and [4].

Interpolation procedures that are able to give accurate re-
sults are often necessary in most of applications. In addi-
tion to the quality of the resulted image, the effort required
to compute the interpolated image is an important concern.
At the lowest level of computational complexity, we have
pixel replication, also known as nearest neighbor interpola-
tion, which is widely used in many applications [1]. How-
ever, when continuity of derivatives is a concern, pixel repli-
cation cannot produce acceptable results. Then, one can lin-
early interpolate between adjacent samples. The extension
of this idea to two-dimensional images is called bilinear in-
terpolation. This strategy is an example of B-spline inter-
polation, which can be generalized to arbitrary order K. In
this sense, a spline is a polynomial between each pair of
given points, and the order of the interpolation is the num-
ber of points (minus one) used in an interpolation scheme.
On the other hand, increasing the order does not necessar-
ily increase the accuracy of the resulted image. It is well
known that spline interpolation does not yield images that

are sufficiently sharp. Moreover, increasing the order imply
a higher computational complexity.

Hence, in the last years, there has been a great deal of
interest in techniques for improving the quality of interpo-
lated images whiling preserving edges. Most of these algo-
rithms are based on some type of image models and a few
of them explicitly estimate high-resolution edge informa-
tion from the low-resolution image and use this information
to control the interpolation [1].

In this work, following the orthogonality principle in a
linear mean-square estimation framework, and under the as-
sumption that the actual image is a stationary random pro-
cess, we propose an alternative scheme for image interpo-
lation. The algorithm is compared with classical B-spline
methods and also with the statistical procedure proposed by
Leung [3]. The Leung’s work describes a Bayesian interpo-
lator that models the sampling process and also consider the
autocovariances of both the signal and the noise in the inter-
polation scheme. According to the normalized mean square
error (NMSE) criteria, our approach is able to give supe-
rior results when compared with the B-spline procedures
and also with the Leung’s algorithm. Furthermore, the com-
putational complexity of the proposed method is similar to
the bilinear interpolation procedure.

2. The Proposed Method

First, consider a continuous one-dimensional signal s.
Given s(t) and s(t + t0), for t, t0 ∈ R, and under the assump-
tion that s is a stationary random process, we want to esti-
mate s(t∗), t < t∗ < t + t0, assuming that

s(t∗) = as(t) + bs(t + t0), (1)

for a, b ∈ R. Following the orthogonality principle [5], the
error must be orthogonal to the data, that is,

E {[s(t∗) − as(t) − bs(t + t0)]s(t)} = 0
E {[s(t∗) − as(t) − bs(t + t0)]s(t + t0)} = 0. (2)

Thus, it can be shown that

R(t∗) = aR(t) + bR(t + t0)
R(t + t0 − t∗) = aR(t + t0) + bR(t), (3)



where R(t) is the autocorrelation function of s(t). Hence, if
the actual autocorrelation of the signal is known, the val-
ues of a and b can be found by solving the linear system in
equation (3). For the proposes of this work, we assume that

R(t) = σ2η|t| + m2, (4)

where m and σ2 are the mean and variance of the signal, and
0 < η < 1 is the correlation coefficient. Now, consider a dis-
crete low resolution image f [x, y], with 0 ≤ x < M and
0 ≤ y < N. In order to estimate a higher resolution image
g[u, v], with 0 ≤ u < U, 0 ≤ v < V , U > M, and V > N, we
first interpolate the desired pixels on the rows (through the
procedure described above), following by the columns in-
terpolation, or vice-versa. We note that in order to estimate
a new pixel in a row (or column), we only need two adja-
cent pixels on the same row (or column). In this sense, the
computational complexity of the proposed method is simi-
lar to the first-order spline procedure.

3. Results

The algorithm was evaluated in a simulation framework.
Figure 1(a) shows a piece of the image that was consid-
ered the actual image. It was decimated by 4 in both direc-
tions and also contaminated with additive Gaussian noise.
Table 1 presents the NMSE values for the interpolation re-
sults considering different levels for the signal to noise ra-
tio. Figure 1(b) to figure 1(f) present the visual results for
the spline methods and also for the statistical algorithms.

Noiseless 30 dB 45 dB 60 dB
1 14.7995 14.7880 14.7969 14.7991
2 14.9631 14.9572 14.9606 14.9626
3 14.8954 14.8835 14.8927 14.8949
4 14.9436 14.9361 14.9411 14.9431
5 252.4131 252.1938 252.3699 252.4053
6 4042.3933 4038.7631 4041.7031 4042.2690

Table 1. NMSE: (1) proposed algorithm; (2) Le-
ung’s algorithm; (3) bilinear interpolation; (4)
pixel replication; (5) cubic convolution; (6) cu-
bic spline.

In this simulation, we assume that σ2 = 1, η = 0.95,
and m is the mean value of adjacent pixels. We note that in
our experiments, the results do not change significantly for
values of η greater than 0.75. From the numerical results,
we conclude that the proposed algorithm performs better
when compared with B-spline interpolation methods and
also with the Leung’s algorithm. We also note that the com-
putational complexity of the Leung’s algorithm is higher
than the method proposed in this work.
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Figure 1. (a) original image; (b) pixel replica-
tion (zero-order); (c) bilinear interpolation (first-
order); (d) cubic convolution (second-order); (e)
proposed procedure; (f) Leung’s algorithm.

4. Concluding Remarks

In this paper, we propose an efficient algorithm for im-
age interpolation based on a statistical framework. In fu-
ture works, we intent to compare our algorithm with the
method described in reference [2]. This work was sup-
ported by FAPESP, Brazil, grant numbers 04/01632-1 and
2002/07153-2.
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