
Memory-Aware and Efficient Ray-Casting Algorithm

Saulo Ribeiro1, André Maximo1, Cristiana Bentes2, Antônio Oliveira1 and Ricardo Farias1

1 COPPE - Systems Engineering Program
Federal University of Rio de Janeiro - Brazil

Cidade Universitária - CT - Bloco H - 21941-972
{saulo, andre, oliveira, rfarias}@lcg.ufrj.br

2 Department of Systems Engineering
State University of Rio de Janeiro - Brazil

Rua São Francisco Xavier, 524 - 20550-900
cris@eng.uerj.br

Abstract

Ray-casting implementations require that the connectiv-
ity between the cells of the dataset to be explicitly com-
puted and kept in memory. This constitutes a huge obsta-
cle for obtaining real-time rendering for very large mod-
els. In this paper, we address this problem by introducing
a new implementation of the ray-casting algorithm for ir-
regular datasets. Our implementation optimizes the mem-
ory usage of past implementations by exploring ray coher-
ence. The idea is to keep in main memory the information of
the faces traversed by the ray cast through every pixel un-
der the projection of a visible face. Our results show that
exploring pixel coherence reduces considerably the mem-
ory usage, while keeping the performance of our algorithm
competitive with the fastest previous ones.

1. Introduction

Direct volume rendering has become a popular technique
for visualizing volumetric data from sources such as scien-
tific simulations, analytic functions, and medical scanners,
such as MRI, CT, among others. The main advantage of di-
rect volume rendering is to allow the investigation of the in-
terior of the data volume, exhibiting its inner structures.

Several algorithms and methods have been proposed for
direct volume rendering, the most popular one is the ray-
casting algorithm. In this algorithm, a ray is cast through
each pixel of the image from the viewpoint. The trace of
the ray determines which cells of the volume each ray inter-
sects. Every pair of intersections is used to compute the cell
contribution for the pixel color and opacity. The ray stops
when it reaches full opacity or when it leaves the volume.

Compared to other direct volume rendering methods, the
great advantages of ray-casting methods are: the computa-
tion for each pixel is independent of all other pixels; and

the traveling of a ray through out the mesh is guided by the
connectivity of the cells of the mesh, avoiding the need of
sorting the cells. The disadvantage is that cell connectivity
has to be explicitly computed and kept in memory. In other
words, the amount of memory used by ray-casting meth-
ods is a huge obstacle for handling very large models.

Recent previous efforts towards improving ray-casting
performance have focused on reducing the execution time
by exploiting hardware graphics, or GPUs (Graphic Pro-
cessing Unit). This approach, however, only provides in-
teractive rendering time when the whole dataset fits into
the GPU memory. Once the data size exceeds the onboard
memory, expensive transfers from main memory to the GPU
have great impact on the rendering speed.

Therefore, the problem of rendering large datasets (that
do not fit in GPU memory) must be addressed by soft-
ware solutions, due to the inherent larger memory capac-
ity [6, 11, 7, 12]. Only a few software solutions, however,
deal with irregular meshes. Garrity [5] proposed the first
method for ray-casting irregular meshes using the connec-
tivity of cells. Bunyk et al. [2] later improved Garrity’s
work providing a faster algorithm. Pina et al. [13] improved
Bunyk approach in: memory consumption; completely han-
dling degenerate cases; and dealing with both tetrahedral
and/or hexahedral meshes. By using new data structures,
Pina et al. reduced significantly the memory requirements
of the Bunyk approach, but the algorithms proposed were
still slower than Bunyk.

In this work, we propose a novel ray-casting algorithm
based on Pina et al. approaches, reducing even more the
memory consumption and improving the execution time.
Our approach is based on the fact that the decision of how
to store the face information is the key for memory con-
sumption and execution time. The more information is kept
in memory, the faster the algorithm computes the next in-
tersection of the ray. In this work, we tackle this tradeoff
by exploring ray coherence in order to maintain in mem-
ory only the face information of the most recent traversals.



Our idea is to use each visible face computed in the pre-
processing step to guide the creation and destruction of in-
ternal faces data in memory. Our algorithm, called Visible
Faces Ray-casting (VF-Ray), obtained consistent and sig-
nificant gains in memory usage over previous approaches.
We also reduced the execution time of Pina et al. approaches
by making a better use of the cache. When compared to the
fast and memory expensive approach by Bunyk et al., we
obtained comparable performance, spending only from 1/3
to 1/6 of the memory.

The remainder of this paper is organized as follows. In
the next section we discuss direct volume rendering of ir-
regular meshes. Section 3 briefly describes the Bunyk’s and
Pina’s approaches. Section 4 describes our ray-casting al-
gorithm and the improvements we made over previous ap-
proaches. In section 5, we present the results of our most
important experiments. Finally, in section 7, we present our
conclusions and proposals for future work.

2. Related Work

Within the research area of accelerating ray-casting
methods, two main research streams have emerged: soft-
ware approaches and graphics hardware approaches.
The very first implementation of the ray-casting algo-
rithm for rendering irregular meshes was proposed in
software by Garrity in [5]. His approach used the connec-
tivity of cells to compute the entry and exit of each ray. This
work was further improved by Bunyk et al. [2], by com-
puting for each pixel a list of intersections on visible
faces, and easily determining the correct order of the en-
try points for the ray. The rendering process follows
Garrity’s method, but when a ray exits the mesh, the al-
gorithm can easily determine in which cell the ray
will re-enter the mesh. This approach becomes sim-
pler and more efficient than Garrity has proposed, however
it keeps some large auxiliary data structures. The re-
cent work by Pina et al. [13] proposes two new ray-casting
algorithms, ME-Raycast and EME-Raycast, that pre-
sented consistent and significant gains in memory usage
and in the correctness of the final image over Bunyk’s ap-
proach. Their algorithms, however, are slower than Bunyk.

In terms of the acceleration techniques used in this work,
ray coherence has been used earlier for accelerating ray
tracing of traditional surface models [14, 15], and later used
in ray-casting for skiping over empty spaces [8].

With the advent of programmable graphics hardware,
several volume rendering algorithms have been developed
taking advantage of this feature to achieve high perfor-
mance. Graphics hardware based solutions usually provide
real-time performance and high quality images. Weiler et
al. [16] present a hardware-based ray-casting algorithm
based on the work of Garrity. They find the initial ray

entry point by rendering front faces, and then traverse
through cells using the fragment program by storing the
cells and connectivity graph in textures. Their method, how-
ever, work only on convex unstructured data. Bernardon
et al. [1] improve Weiler’s approach, by using Bunyk’s
algorithm as the basis for the hardware implementation
and depth peeling to correctly render non-convex irregu-
lar meshes. Espinha and Celes [3] propose an improvement
in Weiler’s work. They use partial pre-integration and pro-
vide interactive modifications of the transfer function. They
also use an alternative data structure, but as their work is
based on Weiler’s work, the memory consumption is still
high. Recently, Weiler el al. [17] proposed an improvement
over their previous work, where they deal with the prob-
lem of storing the whole dataset in GPU memory by using
a compressed form, tetrahedral strips.

In terms of other direct volume rendering algorithms dif-
ferent from ray-casting, it is important to mention the cell
projection approach. In this approach each polyhedral cell
of the volumetric data is projected onto the screen, avoid-
ing the need of maintaining the data connectivity into the
memory, but requiring the cells to be first sorted in visibil-
ity ordering and then composed to generate their color and
opacity in the final image. In this scope, there are some soft-
ware implementations, e.g., [10] and [4], that provide flex-
ibility and easy parallelization. The GPU implementations
of projection algorithms, however, are more popular [16, 9].

3. Previous Approaches

In this section we briefly describe the ray-casting algo-
rithm proposed by Bunyk et al. in [2], that we simply call
Bunyk, and the ones proposed by Pina et al. in [13], called
ME-Ray (Memory Efficient Ray-cast) and EME-Ray (En-
hanced Memory Efficient Ray-cast).

The data structures used by these algorithms to store the
face data guided their memory usage and performance. The
face data are stored in a structure that we call face and cor-
respond to the information about the geometry and the pa-
rameters of the face. The geometry represents the coordi-
nates of the points that define the face. The parameters are
costly to compute and represent the constants for the equa-
tion of the plane defined by the face, that will be used to
compute the intersection between the ray and the face, and
the parameters are used to interpolate the scalar value in-
side the face. The whole face data is the most consuming
data structure in ray-casting.

3.1. Bunyk

In a preprocessing step, all points and tetrahedra of the
input dataset are read, a list of all vertices and a list of cells
are created. In addition, for each input tetrahedron, all four



of its faces are kept in a list. Bunyk also maintains, for
each vertex, a list of all faces that use that vertex, called
referredBy list. After reading the dataset, Bunyk deter-
mines which faces belong to the visible side of the scene
boundary, the visible faces. The algorithm projects these
visible faces on the screen, creating for each pixel, a list of
the intersections, that will be used as the entry point of its
ray. After the entry points are stored, the actual ray-casting
begins. For every pixel, the first intersection is its entry point
into the data, and each next intersection is obtained by in-
specting the intersection between the ray and all other faces
of the current cell. Each pair of intersections are used to
compute the contribution of the cell for the color and opac-
ity of the pixel. The searching for the next intersection in
Bunyk is quite fast, since it is performed among the other
three faces of the tetrahedron. However, the list of all faces
and the referredBy lists result in a very high memory
consumption.

3.2. ME-Ray

ME-Ray starts in a preprocessing step, creating a list of
all vertices, a list of all cells, for each cell the list of cells
that share a face with it, and the Use Set list for each ver-
tex. The Use Set lists substitute the referredBy lists
used in Bunyk, each Use Set contains a list of all cells in-
cident on the vertex. In the rendering algorithm, ME-Ray
creates a list of visible faces, and determine the entry point
of each ray, in the same way as Bunyk. The algorithm pro-
ceeds looking for the next intersection, by scanning through
out the neighbor cells. ME-Ray creates on demand a list
of faces, as the face is intersected by the ray. Faces that
are never intersected by any ray will not be created. After
each pair of intersection is found, the contribution to the fi-
nal color and opacity is computed. ME-Ray can save about
40% of the memory used by Bunyk, but is slower, as it has
to create the faces for the first time during the rendering.

3.3. EME-Ray

EME-Ray was developed as an optimization of ME-Ray
in terms of memory usage. They have similar behavior.
However, EME-Ray does not store the faces in memory,
since it was one of the most memory expensive structures in
ME-Ray. Therefore, EME-Ray has to recalculate the faces
parameters for the computation of the intersections every
time a new face is found. With this optimization, EME-Ray
uses only about 1/4 of the memory used by Bunyk. The sig-
nificant reductions in memory usage comes with an increase
in the execution time, EME-Ray usually doubles Bunyk ex-
ecution time. It is also important to notice that ME-Ray and
EME-Ray gains over Bunyk are not only in memory us-
age, but also in the correctness of the final image. Their

data structures allow them to deal with all degenerate sit-
uations that Bunyk is not able to handle.

4. Visible Face Driven Ray-Casting

Comparing the three ray-casting approaches described in
the previous section, we can observe that the more faces
data are kept in memory, the faster the algorithm computes
the next intersection of the ray. For this reason, Bunyk is
still the fastest software implementation of ray-casting.

Our algorithm, called Visible Face Driven Ray-Casting –
VF-Ray, addresses the problem of maintaining information
about the faces in memory, minimally degrading the render-
ing performance. The basic idea behind VF-Ray is to keep
in main memory only the faces of the most recent traver-
sals. To do so, we explore ray coherence, using the visi-
ble face information to guide the creation and destruction
of faces in memory.

4.1. Exploring Ray Coherence

VF-Ray is based on ray coherence, which comes from
the fact that the set of faces intersected by two rays, cast
from neighboring pixels, will contain almost the same faces.
Our algorithm takes advantage of ray coherence by keeping
in memory only the faces of nearby rays.

One important issue in exploring ray coherence is the de-
termination of the set of rays that are likely to have the same
set of intersected faces. We use the visible faces informa-
tion to do so. The set of rays that may reuse the same list
of faces are the ones that correspond to the set of pixels un-
der the projection of a certain visible face. This set of pixels
will be called here visible set. Figure 1 shows a 2D exam-
ple of this idea. The rays that are cast through the visible
face, presented in the figure, tend to intersect the same in-
ternal faces. Therefore, the internal faces are created and
stored once, for the first ray intersection. After that, they are
reused until all the pixels of the visible set are computed.
This process is repeated for all visible faces. To guarantee
correctness, all visible faces are ordered in depth order.

Visible Face

Internal Faces

screen

Projection

Figure 1. Visible face rays coherence.



Our results show that exploiting pixel coherence reduces
considerably the memory usage, while keeping the VF-
Ray performance competitive with the fastest previous al-
gorithms because the reuse of face data improves cache per-
formance. In fact, for all datasets we tested, approximately
more than half of the faces are created at most two times for
medium size images.

4.2. Data structures

The data structures used by VF-Ray are similar to that
of EME-Ray: an array of vertices, an array of cells, and
the Use Set of each vertex. Besides these structures, VF-
Ray also has a list, called computedFaces that holds the
internal faces throughout the model. Note that this list is
cleaned up after the ray-casting computation of all pixels of
a visible set. In this way, we don’t need to store all the in-
ternal faces, as done by Bunyk and ME-Ray algorithms.

Furthermore, just like ME-Ray and EME-Ray, our algo-
rithm can handle any type of convex cell. For tetrahedral
meshes, the intersections are computed between the line de-
fined by the ray path and the plane defined by the three
vertices of a triangular face. For hexahedral meshes, where
each face is quadrangular, the intersection is found by split-
ting these quadrangular faces into two triangular faces, and
the same calculation is performed for each one.

4.3. Handling Degeneracies

The degenerate situations, which can be found during
the ray traversal, are treated in the same way that was per-
formed in Pina et al. [13], by investigating the Use set of
each vertex. So, when a ray hits a vertex or an edge, the al-
gorithm can determine the next intersection correctly.

4.4. Algorithm

VF-Ray algorithm starts by reading the input dataset and
creating three lists: a list of vertices, a list of cells and the
Use Set list for each vertex. In the rendering process, VF-
Ray creates a list of all visible faces, that are the faces whose
normal makes an angle greater than 90o with the viewing
direction. For each visible face, the algorithm follows the
steps presented in the pseudo-code of Figure 2.

Initially, the visible face, vfacei, is projected onto the
screen, generating the visible set of vfacei. For each pixel
p in the visible set, the algorithm first computes the intersec-
tion between the ray cast from p and vfacei. After this first
intersection is found, the ray traversal begins, when the al-
gorithm computes the intersections of the ray with the inter-
nal faces. The next face intersected, facej , is found on an-
other face of the current cell. If facej was not created be-
fore (this is the first intersection in facej), the face is cre-

ated and inserted into computedFaces list. Otherwise,
the facej data are loaded from the list. The insertion and
loading operations in the list are done in constant time, since
in the cell we store the index for the position of each face
in the list. The computation of the intersections is done us-
ing the face parameters computed when the face is created.
For each intersection, the scalar value is interpolated be-
tween the three vertices of each face, which are used in the
illumination integral proposed by Max [10].

For each visible face vfacei do
Project vfacei; // Determine visible set
For each pixel p of visible set do

Intersect vfacei; // Interpolate scalar value
Do

Find next internal face facej ; // Intersection
If facej not in computedFaces then

Create facej and Insert in computedFaces;
else

Load facej from computedFaces;
Ray integrate; // Optical model

While exist next face facej ;
End For
Clear computedFaces; // Clear list

End For

Figure 2. The pseudo-code of VF-Ray.

5. Results

In this section we evaluate the performance and memory
usage of VF-Ray when compared to ME-Ray, EME-Ray
and Bunyk. We also show a comparison between VF-Ray
and a cell projection algorithm, called ZSweep [4]. This last
experiment was done in order to put our results in perspec-
tive, with respect to other rendering paradigm. The main
idea of ZSweep algorithm is the sweeping of the data with a
plane parallel to the viewing plane XY , towards the pos-
itive z direction. The sweeping process is performed by
ordering the vertices by their increasing z coordinate val-
ues, and then retrieving one by one from this data struc-
ture. For each vertex swept by the plane sweep, the algo-
rithm projects, onto the screen, all faces that are incident to
it. During face projection, ZSweep stores a list of intersec-
tions for each pixel and uses delayed compositing. The pix-
els lists intersections are composed and the lists are flushed
each time the plane reaches the target-z. The target-z is the
maximum z-coordinate among the vertices adjacent to the
vertex intersected by the sweeping plane.



5.1. Testing Configuration

The VF-Ray algorithm was written in C++ ANSI with-
out using any particular graphics libraries. Our experiments
were conducted on a Intel Pentium IV 3.6 GHz with 2 GB
RAM and 1MB of L2 cache, running Linux Fedora Core 5.

We have used four different tetrahedral datasets: Blunt
Fin, SPX Liquid Oxygen Post, and Delta Wing. Table 1
shows the number of vertices, faces, boundary faces and
cells for each dataset. We varied the image sizes, from
512×512 to 8192×8192 pixels. The models rendered with
VF-Ray are shown in Figures 3 to 6. The images generated
by VF-Ray, ME-Ray, and EME-Ray are identical, and bet-
ter than the images generated by Bunyk. There are two rea-
sons for this difference: VF-Ray, ME-Ray, and EME-Ray
use double precision variables to compute ray-faces inter-
sections, while Bunyk used float precision, causing artifacts
in the images, and Bunyk does not handle correctly all de-
generate cases, generating some incorret pixels.

Dataset # Verts # Faces # Tets # Boundary
Blunt 41 K 381 K 187 K 13 K
SPX 149 K 1.6 M 827 K 44 K
Post 109 K 1 M 513 K 27 K
Delta 211 K 2 M 1 M 41 K

Table 1. Dataset sizes.

5.2. Memory Consumption

Table 2 shows the memory used by VF-Ray to render
one frame (in MBytes) for Blunt, SPX, Post and Delta, and
the relative memory usage results of ME-Ray, EME-Ray,
Bunyk and ZSweep when compared to VF-Ray usage. The
percentages presented in this table correspond to the ratio
of the other algorithms memory usage over VF-Ray mem-
ory consumption. In other words, we consider VF-Ray re-
sults as 100% and are presenting how much the other algo-
rithms increase or decrease this result.

As we can observe in Table 2, in most of the cases,
VF-Ray uses less memory than the three other algorithms,
and its memory usage increases linearly with the resolution.
When compared to Bunyk, VF-Ray uses from 1/3 to 1/6 of
the memory spent by Bunyk. These gains are impressive.
For Blunt, for example, VF-Ray renders a 4096× 4096 im-
age using the same amount of memory that Bunyk uses to
render a 512 × 512 image. For the largest dataset, Delta,
Bunyk uses more memory to render a 512×512 image than
VF-Ray uses to render a 8192 × 8192 image.

When compared with the two memory-aware ray-casting
algorithms, ME-Ray and EME-Ray, we can observe that

ME-Ray uses from 1.5 to 6 times more memory than VF-
Ray. For EME-Ray, we notice an interesting result. Al-
though EME-Ray does not store the faces in memory, for
high resolution images, bigger than 1024 × 1024, EME-
Ray uses more memory than VF-Ray. This result can be
explained by the fact that EME-Ray, just like Bunyk and
ME-Ray, maintains for each pixel a list containing the entry
faces for the pixel. The number of lists increases with the in-
crease in image resolution. VF-Ray, on the other hand, does
not require this kind of list, since it computes the entry point
of each ray on demand, for each visible face.

When compared to ZSweep, we can observe that except
for SPX with a 512 × 512 image, VF-Ray uses much less
memory than ZSweep. For the higher resolution images,
ZSweep can use 8 or 9 times more memory than VF-Ray.
To render SPX with a 8192 × 8192 image, for example,
ZSweep spends about 2GB of memory. The ZSweep mem-
ory consumption is directly proportional to the final image
resolution, since it creates pixels lists to store the intersec-
tions found for each pixel.

5.3. Rendering Performance

Table 3 shows the rendering time (in seconds) of VF-Ray
for Blunt, SPX, Post and Delta, and the relative timing re-
sults of ME-Ray, EME-Ray, Bunyk and ZSweep when com-
pared to VF-Ray execution. Just like the previous table, the
percentages presented in this table correspond to the ratio
of the other algorithms execution time over VF-Ray execu-
tion time. The time results correspond to the rendering of
one frame and do not include preprocessing time.

As we can observe in Table 3, VF-Ray outperforms ME-
Ray, EME-Ray and ZSweep for all datasets and all image
resolutions. For Blunt, Post and Delta, VF-Ray is about 3
times faster than EME-Ray and ZSweep, and uses about
3/4 of the time used by ME-Ray to render the image. For
SPX, the gains of VF-Ray against EME-Ray and ZSweep
are smaller, but still high. When compared to Bunyk, for
Blunt and Delta, VF-Ray presents almost the same execu-
tion time, since the difference is only about 10%. For SPX
and Post, VF-Ray is only about 22% slower than Bunyk.

Observing the increase in the rendering time of VF-Ray
for different image resolutions, we notice that as the im-
age resolution increases, the rendering time increases in the
same proportion. The gains over the other algorithms are al-
most the same for different resolutions.

6. Discussion

VF-Ray had obtained consistent and significant gains in
memory usage over Bunyk, providing almost the same per-
formance (the difference on their execution time is only
about 16%). As the image resolution increases, our gains



Dataset Resolution Memory (MB) ME-Ray EME-Ray Bunyk ZSweep

512 × 512 14 404% 166% 528% 208%
1024 × 1024 30 240% 129% 297% 177%

Blunt 2048 × 2048 39 333% 251% 377% 369%
4096 × 4096 75 495% 451% 517% 689%
8192 × 8192 219 610% 655% 617% 917%
512 × 512 96 215% 74% 299% 87%

1024 × 1024 99 234% 88% 305% 107%
SPX 2048 × 2148 108 271% 141% 337% 188%

4096 × 4096 144 383% 284% 428% 407%
8192 × 8192 288 533% 498% 569% 711%
512 × 512 63 165% 74% 290% 97%

1024 × 1024 66 203% 95% 301% 129%
Post 2048 × 2048 74 281% 172% 353% 238%

4096 × 4096 110 424% 349% 470% 499%
8192 × 8192 256 601% 560% 603% 800%
512 × 512 116 167% 74% 303% 97%

1024 × 1024 119 200% 84% 308% 116%
Delta 2048 × 2048 129 246% 124% 330% 177%

4096 × 4096 165 346% 247% 403% 375%
8192 × 8192 307 500% 467% 534% 704%

Table 2. Memory usage results for VF-Ray compared to ME-Ray, EME-Ray, Bunyk and ZSweep.

in memory usage over Bunyk are even more pronounced,
but the difference in the rendering time remains the same.
For 8192 × 8192 images, Bunyk uses about 6 times more
memory than VF-Ray with a performance difference of
only about 18%. In our experiments, however, we are only
comparing executions where the whole dataset fits in main
memory for all algorithms. Our experimental platform has
2 GB of main memory that can store all the data structures
used by our workload. As the memory usage increases, the
rendering will need to use the virtual memory mechanisms
of the operating system, which would have great influence
on the overall execution time.

The small increase in the execution time, when compared
to Bunyk, comes from the fact that Bunyk computes all in-
ternal faces in the preprocessing step, before the ray-casting
loop, while VF-Ray does it on demand, as the face is inter-
sected for the first time. In addition, in VF-Ray, if a face is
intersected by rays of two different visible faces, it has its
data computed twice.

The comparison of VF-Ray with ME-Ray and EME-
Ray provided interesting results. ME-Ray and EME-Ray
are memory-aware algorithms designed to reduce the great
memory usage of Bunyk. VF-Ray was designed to reduce
ME-Ray memory usage, close to the usage of EME-Ray, but
running much faster than EME-Ray. Our results showed,
however, that for high resolution images, our algorithm is
not only faster than ME-Ray but uses less memory than
EME-Ray. The gains of VF-Ray over EME-Ray in mem-
ory usage come from the elimination of the lists of entry
faces for each pixel. The gains of VF-Ray over ME-Ray in

execution time come from the good cache performance of
VF-Ray. We have made some experiments to evaluate the
cache misses of VF-Ray and ME-Ray and obtained for VF-
Ray a cache miss ratio very low, near 0%, while the cache
miss ratio of ME-Ray is about 1.9% for modest size im-
ages. This result was obtained because our algorithm reuse
the faces for the rays in the same visible face. Given the fact
that rays are shot one after the other, the closer the neigh-
boring rays are to each other, the higher the probability is
that they reuse the cached data.

The comparison of VF-Ray with the cell projection ap-
proach, implemented by ZSweep, showed that VF-Ray is
faster and spends less memory than ZSweep. The gains
are huge. For the Delta dataset, ZSweep uses 7 times more
memory, running about 3.5 times slower than VF-Ray. The
pixel list maintained by the ZSweep approach increases
while a target-Z was not reached. As this list grows, the
insertion is more expensive, since the pixel list must be or-
dered. On the other hand, the data structures on the VF-Ray
algorithm does not depend on ordering. The difference in
memory usage of ZSweep is due to the increase in these
pixels lists. For ZSweep, as the image size increases, each
face projected will insert intersection units into more pixel
lists. If the target-Z is not appropriate, the pixels lists will
increase considerably.

In terms of the dataset characteristics, the performance
of VF-Ray increases as the number of pixels in each vis-
ible face increases. Datasets with a small number of faces
have a greater amount of pixels per visible face. Therefore,
datasets, like Blunt, that has a small number of faces, tend



Dataset Resolution Time (sec) ME-Ray EME-Ray Bunyk ZSweep

512 × 512 1.9 139% 296% 105% 253%
1024 × 1024 7.0 143% 317% 94% 431%

Blunt 2048 × 2048 27.2 146% 337% 88% 481%
4096 × 4096 107.4 147% 328% 88% 516%
8192 × 8192 426.7 154% 341% 91% 382%
512 × 512 4.1 111% 161% 76% 287%

1024 × 1024 13.0 103% 203% 81% 202%
SPX 2048 × 2048 46.6 103% 225% 83% 219%

4096 × 4096 177.1 105% 234% 82% 226%
8192 × 8192 696.3 105% 238% 81% 260%
512 × 512 5.0 138% 251% 80% 201%

1024 × 1024 19.5 136% 254% 76% 167%
Post 2048 × 2048 78.6 133% 258% 74% 194%

4096 × 4096 309.9 135% 257% 74% 227%
8192 × 8192 1246.3 135% 263% 72% 246%
512 × 512 3.1 130% 242% 91% 465%

1024 × 1024 11.2 122% 270% 88% 271%
Delta 2048 × 2048 41.9 121% 280% 87% 312%

4096 × 4096 162.7 120% 290% 84% 341%
8192 × 8192 640.3 123% 290% 83% 369%

Table 3. Time results for VF-Ray compared to ME-Ray, EME-Ray, Bunyk and ZSweep.

to present better performance results for VF-Ray.
Finally, it is important to keep in mind that the reduc-

tions in memory usage will allow the implementation of the
algorithm in the graphics hardware. Furthermore, these re-
ductions will also allow the use of double precision in the
parameters to calculate the intersection between a ray and a
face, raising the chance to obtain more precise images.

Figure 3. Blunt image generated by VF-Ray.

7. Conclusions

In this work, we have proposed a novel memory-aware
and efficient software ray-casting algorithm for volume ren-
dering, called VF-Ray. The algorithm is suitable for tetrahe-

Figure 4. SPX image generated by VF-Ray.

dral or hexahedral datasets, including non-convex and dis-
connected meshes even with holes.

Our idea was to explore ray coherence in order to reduce
the memory requirements for the storing of faces data while
achieving a good cache performance. We compared VF-Ray
memory usage and performance with previous ray-casting
approaches, and with a cell projection algorithm. When
compared to the fastest and memory expensive approach, by
Bunyk, VF-Ray obtained comparable performance, spend-
ing only from 1/3 to 1/6 of the memory. When compared
to the memory-aware Pina et al algorithms, VF-Ray ob-
tained consistent and significant gains in memory usage and
in execution time. When compared to the cell projection ap-
proach, VF-Ray also reduced significantly the memory con-



Figure 5. Post image generated by VF-Ray.

Figure 6. Delta image generated by VF-Ray.

sumption and the execution time.
The reductions in memory usage makes VF-Ray suitable

for using double precision in the parameters to calculate the
intersection between a ray and a face. Using double preci-
sion avoids the artifacts that appear when float precision is
used. We conclude that VF-Ray is an efficient ray-casting
algorithm that allows the in-core rendering of big datasets.
As future work, we intend to optimize VF-Ray by keeping
face data for neighboring visible faces, and to parallelize
VF-Ray in order to run on a cluster of PCs

8. Acknowledgments

We acknowledge the grant of the first and second authors
provided by Brazilian agencies CAPES and CNPq.

References

[1] F. Bernardon, C. Pagot, J. Comba, and C. Silva. Gpu-based
tiled ray casting using depth peeling. Journal of Graphics
Tools, To appear.

[2] P. Bunyk, A. Kaufman, and C. Silva. Simple, fast, and ro-
bust ray casting of irregular grids. Advances in Volume Visu-
alization, ACM SIGGRAPH, 1(24), July 1998.

[3] R. Espinha and W. Celes. High-quality hardware-based ray-
casting volume rendering using partial pre-integration. In
SIBGRAPI ’05: Proc. of the XVIII Brazilian Symposium on
Computer Graphics and Image Processing, October 2005.

[4] R. Farias, J. Mitchell, and C. Silva. Zsweep: An efficient and
exact projection algorithm for unstructured volume render-
ing. In 2000 Volume Visualization Symposium, pages 91 –
99, October 2000.

[5] M. P. Garrity. Raytracing irregular volume data. In VVS ’90:
Proceedings of the 1990 workshop on Volume visualization,
pages 35–40. ACM Press, 1990.

[6] L. Hong and A. Kaufman. Accelerated ray-casting for curvi-
linear volumes. In VIS ’98: Proceedings of the conference
on Visualization ’98, pages 247–253, 1998.

[7] K. Koyamada. Fast ray-casting for irregular volumes. In
ISHPC ’00: Proc. of the Third International Symposium on
High Performance Computing, pages 557–572, 2000.

[8] S. Lakare and A. Kaufman. Light weight space leaping us-
ing ray coherence. In Proc. IEEE Visualization 2004, pages
19–26, 2004.

[9] R. Marroquim, A. Maximo, R. Farias, and C. Esperanca.
Gpu-based cell projection for interactive volume rendering.
In SIBGRAPI ’06: Proc. of the Brazilian Symposium on
Computer Graphics and Image Processing, October 2006.

[10] N. Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graph-
ics, 1(2):99–108, 1995.

[11] M. Meibner, J. Huang, D. Bartz, K. Mueller, and R. Craw-
fis. A practical evaluation of popular volume rendering algo-
rithms. In VVS ’00: Proceedings of the 2000 IEEE sympo-
sium on Volume visualization, pages 81–90, 2000.

[12] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-
based first-hit ray casting. In VISSYM ’02: Proceedings of the
symposium on Data Visualisation 2002, pages 77–ff, 2002.

[13] A. Pina, C. Bentes, and R. Farias. Memory efficient and ro-
bust software implementation of the raycast algorithm. In
WSCG’07: The 15th Int. Conf. in Central Europe on Com-
puter Graphics, Visualization and Computer Vision, 2007.

[14] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray
tracing algorithm. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers, pages 1176–1185, 2005.

[15] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. nterac-
tive rendering with coherent ray tracing. In Eurographics 01
Proceedings, pages 153–164, 2001.

[16] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based
ray casting for tetrahedral meshes. In Proceedings of the 14th
IEEE conference on Visualization ’03, pages 333–340, 2003.

[17] M. Weiler, P. Mallón, M. Kraus, and T. Ertl. Texture-encoded
tetrahedral strips. In 2004 IEEE Symposium on Volume Visu-
alization and Graphics (VolVis 2004), pages 71–78, October
2004.


