
Two-stage Binary Image Operator Design:
an Approach Based on Interaction Information

Carlos S. Santos, Nina S. T. Hirata and Roberto Hirata Junior
Department of Computer Science

Institute of Mathematics and Statistics
University of Sa̋o Paulo

Rua do Mata̋o, 1010 – 05508-090 Sa̋o Paulo, Brazil
(csantos, nina, hirata)@ime.usp.br

Abstract

We address the problem of binary image operator design
over large windows by breaking it into two phases. Firstly,
we design several operators over small sub-windows of the
main window. The outputs of these first level operators are
then combined into a global operator. We devise a heuris-
tic, motivated by Information Theory, for breaking the main
window into sub-windows. Preliminary results show that
the proposed scheme improves operator performance over
single-level operators.

1. Introduction

The design of translation invariant and locally defined bi-
nary image operators is equivalent to the design of Boolean
functions whose variables are given by the window which
establishes the locality property of the operator. An optimal
mean absolute error (MAE) operator can be obtained if the
joint distribution between images to be processed and re-
spective ideal output images are known. Since in practice
this probability is not known, a usual approach is to esti-
mate it from sample pairs and use the estimated probabili-
ties to design an approximately optimal operator [1]. How-
ever, for large windows several shortcomings arise: (1) esti-
mation is not accurate, (2) many of the patterns are not even
observed in the training sample, and (3) computational time
and memory space required is large.

To deal with these difficulties, a two-level design ap-
proach based on stacked generalization, a pattern classifi-
cation approach proposed by Wolpert in [9], has been re-
cently proposed [3]. More specifically, given a large win-
dow, several sub-windows, whose union equals the given
window, are considered and one operator is designed for
each sub-window. This step generates the first level opera-

tors. In the sequel, outcomes of these first level operators are
combined to form a new pattern that is posteriously used to
train a second level operator. This composition results in a
two-level operator that indirectly makes use of all data ob-
served through window W , although individual operators
of the first level observe only part of it. The advantages of
this approach are: (1) the MAE of the estimated composi-
tion is better than the MAE of the operator estimated over
the whole window and (2) the overall computation time re-
quired is smaller than the time required for designing di-
rectly on the large window.

So far, sub-windows of the first level operators have been
chosen empirically, both with regard to their shapes and
quantity, in a trial and error basis [3]. In this paper, we ad-
dress the problem of selecting appropriate sub-windows of
the large window. The proposed approach is based on in-
formation theory concepts, particularly on interaction in-
formation [7]. Information theory has been used before in
designing binary morphological operators. In [6], informa-
tion on the training set is maximized to find a minimal win-
dow. In [8], mean conditional entropy is used as a criterion
to choose a multiresolution pyramid of windows. In this pa-
per, we present a method based on interaction information
(a generalization of mutual information) to select a set of
sub-windows of a larger window. This is done by a series of
transformations on the variables that define the larger win-
dow in a way that the information is preserved but the inter-
action between the variables is sequentially reduced. At the
end, each new variable will lead to a desired sub-window.

This paper is organized as follows. In Section 2, we
present a brief review on morphological image operators,
their equivalence to Boolean functions and the usual design
procedure from training data as well as the two-level train-
ing proposed in [3]. In Section 3, we review some main con-
cepts from Information Theory. In Section 4, we present and
show that appropriate transformations of binary variables
have the property of preserving the information of the ini-

tial variables. By choosing an adequate sequence of binary
variable transformations, we are able to generate a new set
of variables (related to the initial ones) that preserves infor-
mation but reduces interaction between pairs of variables. In
Section 5 we show how such transformations can be used to
select a set of sub-windows to be used in the first level op-
erators. In Section 6 we present some experimental results
and in Section 7 we present some discussions and the con-
clusions of our work.

2. Binary Image Operator Design

Binary images defined on E = Z2 can be represented
as subsets S ⊆ E. Let P(E) be the collection of all sub-
sets of E. The translation of a set S ∈ P(E) by a vec-
tor z ∈ E is denoted Sz . Binary image operators are
mappings from P(E) to P(E). Given an image operator
Ψ : P(E) → P(E), we say that Ψ is translation-invariant
(t.i.) if and only if [Ψ(S)]z = Ψ(Sz) for any z ∈ E and
S ∈ P(E). Given a non-empty subset W ⊆ E, W =
{w1, w2, . . . , wn}, we say that Ψ is locally defined (l.d.)
within W if x ∈ Ψ(S) ⇐⇒ x ∈ Ψ(S ∩Wx). If Ψ is both
t.i. and l.d., then it can be locally characterized by a func-
tion of the form ψ : {0, 1}n → {0, 1}, on n binary variables
X1, X2, . . . , Xn, as follows z ∈ Ψ(S)⇐⇒ ψ(S−z∩W) =
1 , where ψ(S−z ∩W) means Xi = 1⇐⇒ wi ∈ S−z ∩W .

2.1. Operator optimality

We assume that there exists a jointly stationary pro-
cess (S, I), whose realizations are observed images that we
would like to process and their corresponding ideal images
(i.e., the images desired as the result of the processing), re-
spectively. The process S ∩Wz is also a random set, which
can be thought as a random vector Xz by associating each
element of S∩Wz to a component of Xz . Due to stationar-
ity, we drop z from Xz and consider that X is a random vec-
tor whose realizations correspond to the patterns observed
in S through W at any location. Similarly, the value of a
given pixel z in I can be thought as a realization of a ran-
dom variable Yz . By the same reason, we drop z from Yz .
We denote P (X, Y) the joint distribution of (X, Y).

The MAE of an image operator Ψ, characterized by
ψ, with respect to process (S, I) is the expected value
MAE〈Ψ〉 = E[|ψ(X) − Y |] . It is known that the MAE
optimal operator Ψ is the one characterized by the func-
tion given by, for any realization x of X, ψ(x) =
0, if P (x, 0) > P (x, 1), ψ(x) = 1, if P (x, 1) > P (x, 0),
ψ(x) = 0 or 1, otherwise.

2.2. Designing from examples

Computation of an optimal MAE operator depends on
the joint distribution P . However, this probability is un-
known in general. These probabilities can be estimated from
sample pairs (Si, Ii), i = 1, . . . ,m of input-output images,
leading to the following design procedure.

1. Slide W on each input image Si and at each loca-
tion record the pattern x and the respective value y
in Ii at the same location. This yields and estimate of
P̂ (X, Y) of P (X, Y).

2. For each observed pattern x, make ψ̂(x) = 1 ⇐⇒
P̂ (x, 1) > P̂ (x, 0) and ψ̂(x) = 0 otherwise. This
yields an incompletely specified function ψ̂ (since, in
general, not all possible patterns are observed in step
1).

3. Using the pairs (x, ψ̂(x)) as training data, ap-
ply any generalization algorithm. This yields a com-
pletely specified function ψ̂. We use Boolean function
minimization as the learning algorithm [4].

For the two-level design, let W denote the whole
large window and let W1,W2, . . . ,Wk ⊂ W be the
sub-windows of the first-level operators. The procedure de-
scribed above is applied for each of the sub-windows, re-
sulting in k first level operators that we denote ψ

(1)
i ,

i = 1, 2, . . . , k. These values form a new random vec-
tor, (ψ1, ψ2, . . . , ψk), that will be used in the same way,
i.e., the pairs (ψ1, ψ2, . . . , ψk, ψ̂(x)) will be used as train-
ing data to the second-level operator.

3. Review on Information Theory Concepts

In this section we review some concepts from Informa-
tion Theory which allow us to characterize the redundancy
among first-level operators and also the information loss
caused by decomposing the problem into parts for poste-
rior combination.

3.1. Entropy and Mutual Information

In the framework of Information Theory, entropy is the
measure of the mean information necessary for determin-
ing the value of one random variable. For a discrete random
variable X taking values in a set X and with distribution
P (X), the entropy is defined as [2]:

H(X) = −
∑
x∈X

P (x) logP (x) . (1)

Throughout this article we will use 2 as the base for the log-
arithm, in which case the entropy is measured in bits (binary

digits). The concept can be extended for two or more ran-
dom variables by replacing P (X) in equation (1) with the
joint distribution of the variables. For instance, let X be as
above and let Y be a discrete random variable taking val-
ues in a set Y . The joint entropy H(X,Y) is then given by:

H(X,Y) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (x, y) . (2)

The mutual information between two random variables,
which measures how much uncertainty about one variable
is resolved by observation of the other [2] is given by

I(X;Y) = H(Y) +H(X)−H(X,Y)

=
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)
P (x)P (y)

. (3)

Let X̃ = ξ(X) be a random variable obtained by apply-
ing some function ξ on X . The Data Processing Inequal-
ity [2] states that X̃ cannot convey more information about
Y than X itself: I(X̃;Y) ≤ I(X;Y) .

3.2. Interaction Information

Interaction information [7] is a measure of how much
two random variables interact to determine the value of a
third one. Let Y , X1 and X2 be discrete random variables
defined on sets Y , X1 and X2, respectively. Their interac-
tion information I(Y ;X1;X2) is defined as:

I(Y ;X1;X2) = I(Y ; (X1, X2))− I(Y ;X1)− I(Y ;X2)
(4)

where I(Y ; (X1, X2)) is the mutual information between Y
and the pair (X1, X2) considered jointly.

Interaction information is negative when X1 and X2

are redundant with respect to Y , i.e. when I(Y ;X1) and
I(Y ;X2) overlap. Interaction information is positive when
new information about Y is gained by the joint observation
of (X1, X2) compared to the situation when we only ob-
serve X1 and X2 separately. Equation (4) can also be writ-
ten as:

I(Y ;X1;X2) = I(X1;X2|Y)− I(X1;X2) (5)

where the mutual information between X1 and X2 condi-
tioned on the observation of Y , I(X1;X2|Y), is given by:

I(X1;X2|Y) =
∑
x1

∑
x2

∑
y

P (x1, x2, y) log
P (x1, x2|y)

P (x1|y)P (x2|y)
.

(6)
Interaction information is related to the ability of cre-

ating statistical models by parts-to-whole decompositions.
When I(Y ;X1;X2) approaches zero, it is justifiable to es-
timate the relationship between pairs (Y,X1) and (Y,X2)

separately and combine them in a output prediction af-
terwards. In case of negative interaction, I(Y ;X1) and
I(Y ;X2) will overlap and one must be careful not to over-
count the evidence for any class label y ∈ Y . When
I(Y ;X1;X2) is positive, decomposition of the problem
into parts will lead to information loss; ideally one should
try to learn the full relationship between Y and the pair
(X1, X2) instead.

4. Information Preserving Transformations
for Binary Variables

In this section we show a procedure to build mappings
from one set of binary variables X into another set X̃
while preserving the information about an output variable
Y . Moreover, such mappings can be built by observation
of only low-order marginal distributions, thus avoiding the
complicated issue of estimating high dimensional joint dis-
tributions.

4.1. Building Mappings Through Distribution Per-
mutations

Consider once again a random vector X =
(X1, X2, . . . , Xn) ∈ {0, 1}n. We choose an arbi-
trary pair of variables Xi, Xj , 1 ≤ i < j ≤ n.
Define the auxiliary random vector X′ =
(X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1 . . . , Xn). The
joint distribution of (X1, X2, . . . , Xn) can be writ-
ten as:

P (X) = P (X1, X2, . . . , Xn)
= P (X′|Xi, Xj)P (Xi, Xj) (7)

with P (X′) defined accordingly. Let F = (σ, ρ) be a map-
ping from {0, 1}2 to {0, 1}2, where (σ, ρ) defines a permu-
tation of {(0, 0), (0, 1), (1, 0), (1, 1)}. The following rela-
tion is then satisfied by a distribution Q:

Q(σ(r, s), ρ(r, s)) = P (r, s), (8)

for all r, s ∈ {0, 1}. One example of such a mapping is
(X̃i, X̃j) = (Xi, Xj), which leads to: Q(r, s) = P (r, s)
where • means the Boolean negation of •.

We define now the random vector X̃ =
(X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xj−1, X̃j , Xj+1 . . . , Xn).
The distribution Q(X̃) of the components of X̃ can be writ-
ten as:

Q(X̃) = Q(X1, . . . X̃i, . . . , X̃j , . . . , Xn)
= Q(X′|X̃i, X̃j)Q(X̃i, X̃j) . (9)

We analyze now the joint entropy H(X̃) =
H(X1, . . . X̃i, . . . , X̃j , . . . , Xn):

H(X̃) = −
∑
x̃

Q(x̃) logQ(x̃i, x̃j)Q(x′|x̃i, x̃j) . (10)

Using standard properties of the logarithm function it can
be shown that:

H(X̃) = H(X̃i, X̃j)−
∑
x̃

Q(x̃) logQ(x′|x̃i, x̃j) . (11)

The summation term in equation (11) can be further ex-
panded as (using equation (9)):∑
{x̃i,x̃j}

Q(x̃i, x̃j)
∑
x′

Q(x′|x̃i, x̃j) logQ(x′|x̃i, x̃j) . (12)

Since there is a one-to-one correspondence between the
events (X̃i = σ(r, s), X̃j = ρ(r, s)) and (Xi = r,Xj = s),
we can write:

Q(x′|X̃i = σ(r, s), X̃j = ρ(r, s)) = P (x′|Xi = r,Xj = s) .
(13)

By applying the identities (8) and (13) into (12) it is readily
seen that the summation in (12) can be recast as:∑
{xi,xj}

P (xi, xj)
∑
x′

P (x′|xi, xj) logP (x′|xi, xj) . (14)

The term in (14) is equivalent to:
∑

x P (x) logP (x′|xi, xj) .
Recalling expression (2) for the joint entropy, it becomes
clear that the effect of the mapping (X̃i, X̃j) = F(Xi, Xj)
over the calculation of the joint entropy H(X̃i, X̃j) is
only to promote a reordering of the terms in the summa-
tion, thus the joint entropy remains unaltered:

H(X̃i, X̃j) = −
∑

r

∑
s

Q(σ•, ρ•) logQ(σ•, ρ•)

= −
∑

r

∑
s

P (r, s) logP (r, s) = H(Xi, Xj) .

(15)

where • = (r, s). By analogy with equation (11), a similar
expression can be derived for H(X):

H(X) = H(Xi, Xj)−
∑
x

P (x) logP (x′|xi, xj) . (16)

The equivalence between (12) and (14) and identity (15) im-
plies:

H(X) = H(Xi, Xj)−
∑
x

P (x) logP (x′|xi, xj)

= H(X̃i, X̃j)−
∑
x̃

Q(x̃) logQ(x′|x̃i, x̃j)

= H(X̃) . (17)

Equation (17) states that mappings that obey the permuta-
tion condition defined in (8) will keep constant the joint en-
tropy of a random vector of binary variables. This result en-
tails that for a random vector {Y,X1, X2, . . . , Xn} and a

mapping (X̃i, X̃j) = F(Xi, Xj), both identities will be ob-
served:

H(X) = H(X̃) (18)
H(Y,X) = H(Y, X̃) . (19)

Since the mutual informations I(Y,X) and I(Y, X̃) are
given by:

I(Y,X) = H(Y) +H(X)−H(Y,X) (20)
I(Y, X̃) = H(Y) +H(X̃)−H(Y, X̃) (21)

the mutual information between the output variable Y and
the transformed vector X̃ will also be preserved.

4.2. Permutation Transformations for Binary
Variables

Here we study a class of transformations
(X̃i, X̃j) = F(Xi, Xj) that possesses the permuta-
tion characteristic stated in equation (8) and how they af-
fect the interaction. Our goal is finding transformations
that reduce the interaction I(Y ; X̃i; X̃j), so the prob-
lem of learning an operator Y = ψ(X) can be framed
in a parts-to-whole statistical model. This kind of proce-
dure is motivated by previous work [5] showing that fea-
ture construction based on interaction information can
improve the performance of the Naive Bayes classi-
fier.

Since we have four different events associated with real-
izations of (Xi, Xj), namely {(0, 0), (0, 1), (1, 0), (1, 1)},
the class of permutation transforms has 4! = 24 members.

The first fact we must note is that, as shown above, this
class of transformations will keep constant the joint en-
tropy, H(X̃i, X̃j) = H(Xi, Xj). Therefore, the only way
to change the value of the mutual information I(X̃i, X̃j) =
H(X̃i) + H(X̃j) − H(X̃i, X̃j) is by changing the sum
of marginal entropies H(X̃i) and H(X̃j) with respect to
their counterparts H(Xi) and H(Xj). Some permutations
will keep that sum unchanged. For instance: (X̃i, X̃j) =
(Xj , Xi) will lead to H(X̃i) = H(Xj) and H(X̃j) =
H(Xi), obviously making H(X̃i) + H(X̃j) = H(Xi) +
H(Xj). Another type of transform that does not affect
marginal entropies is negating either one or both variables.
To see that, we analyze the entropy formula for one binary
variable:

H(X) = −
∑

x∈{0,1}

P (X = x) logP (X = x) . (22)

Since P (X = 0) = P (X = 1) and P (X = 1) =
P (X = 0), we have that H(X) = H(X). From the dis-
cussion above we can state that for any pair (A,B) of bi-
nary variables there can be defined 8 pairs that correspond

to permutation transforms which preserve the mutual infor-
mation (note that the first one corresponds to the identity
transform):

{(A, B), (A, B), (A, B), (A, B), (B, A), (B, A), (B, A), (B, A)}

It follows that the set of 24 permutation transforms can
lead to at most 24/8 = 3 different values of mutual in-
formation. From equation (5) we see that I(Y ; X̃i; X̃j) can
be expressed as a function of mutual information terms be-
tween X̃i and X̃j . Therefore permutation transforms can
also lead to at most 3 different values of interaction infor-
mation. One such value is given by the original interaction
I(Y ;Xi;Xj). The other two correspond to the mappings
(X̃i, X̃j) = (Xi, Xi⊕Xj) and (X̃i, X̃j) = (Xi⊕Xj , Xj),
where ⊕ denotes the exclusive OR (XOR) operation. Ta-
ble 1 illustrates how these mappings relate to permuta-
tions of events in {0, 1}2. The XOR operation changes the
marginal distribution of the transformed variable:

P (Xi ⊕Xj = 0) = P (Xi = 0, Xj = 0) + P (Xi = 1, Xj = 1)
P (Xi ⊕Xj = 1) = P (Xi = 0, Xj = 1) + P (Xi = 1, Xj = 0)

and consequently the entropy H(Xi ⊕ Xj) will also be
changed.

Xi, Xj Xi, Xi ⊕Xj Xi ⊕Xj , Xj

0, 0 0, 0 0, 0
0, 1 0, 1 1,1
1, 0 1,1 1, 0
1, 1 1,0 0,1

Table 1. The two permutation transforms that
change mutual information. Permuted events
are shown in bold.

The successive application of two-variable mappings
will require the calculation of the XOR function over pairs
of already transformed variables. In this situation the XOR
function generalizes as the parity function (PAR) over a set
of binary variables {Z1, Z2, . . . , ZK}, Zk ∈ {0, 1}:

PAR(Z1, Z2, . . . , ZK) =

{
0 if

∑K
k=1 Zk is even,

1 if
∑K

k=1 Zk is odd.
(23)

The XOR function is equivalent to PAR for two bi-
nary variables. Given two sets of binary variables, Xα =
{Xα(1), . . . , Xα(U)} and Xβ = {Xβ(1), . . . , Xβ(V)},
α(u), β(v) ∈ {1, . . . , n}, we have:

PAR(Xα)⊕ PAR(Xβ) = PAR(Xα ∪Xβ \Xα ∩Xβ) .
(24)

Variables in the intersection set Xα ∩ Xβ are removed
because terms that appear twice (or any even number of

times) do not influence parity computation. Expression (24)
shows that iterative application of two-variable transforma-
tions leads to the formation of clusters of binary variables.

We define now a procedure for finding a transforma-
tion X̃ = G(X), G : {0, 1}n 7→ {0, 1}n which re-
duces the average magnitude of interactions I(Y ; X̃i; X̃j),
i, j ∈ {1, . . . , n}, Y ∈ {0, 1}. The inputs to the procedure
are:

• training pairs (X, Y)1, . . . , (X, Y)L

• number of iterations N

The procedure returns:

• the set of transformed vectors: X̃1, . . . , X̃L

• a list of clusters C[1], . . . ,C[n]

Each cluster C[α] = {Xα(1), . . . , Xα(U)}, α(i) ∈
{1, . . . , n}, is related to one component of X̃ by the for-
mula: X̃α = PAR(C[α]) .

As the first step of the procedure we set X̃← X and de-
fine a list of clusters: C[i] ← {Xi}, i ∈ {1, . . . , n} . At
each iteration we choose a pair of indices i, j ∈ {1, . . . , n},
i 6= j and calculate the three possible interaction values:

I0 = I(Y ; X̃i; X̃j)
Ii = I(Y ; X̃i ⊕ X̃j ; X̃j)
Ij = I(Y ; X̃i; X̃i ⊕ X̃j) .

If the minimal interaction corresponds to I0 we just
advance to the next iteration. Otherwise we set:
λ = arg mini,j(Ii, Ij) and apply the corresponding
mapping, by updating X̃λ, X̃λ ← X̃i ⊕ X̃j and the respec-
tive cluster:

C[λ]← C[i] ∪ C[j] \ C[i] ∩ C[j]

This process is repeated till the specified number of itera-
tions is reached.

For assessing the effectiveness of the proposed method
we compare interaction values before and after the transfor-
mation. For that we adopted three measures:

1. Maximum interaction: maxi,j I(Y ; θi, θj), i 6= j

2. Minimum interaction: mini,j I(Y ; θi, θj), i 6= j

3. Average of absolute interaction:

2
n(n− 1)

∑
i,j

|I(Y ; θi, θj)|, i 6= j

When we calculate pre-transformation interactions θi is re-
placed with Xi. For post-transformation evaluation θi is re-
placed with X̃i.

5. Sub-Window Selection Based on Interac-
tion Analysis

Recalling the framework for operator design presented
in section 2.2, we devise the following scheme for sub-
window selection based on interaction information. A large
window W is adopted for generating a sample of input-
output pairs (X, Y). After that we apply the above proposed
algorithm for interaction reduction. At this point it might be
suggested the use of parity functions as the first level op-
erators in a two-stage operator design scheme. Preliminary
results (unreported) with this approach showed that an ex-
cessive number of parity functions was needed to achieve an
acceptable operator performance. That put too much burden
on the second level training phase, because of the number
of input variables. Alternatively, we adopted the heuristic of
treating each derived cluster as one sub-window. The Data
Processing Inequality asserts that each sub-window carries
at least the same information about Y as its parity function.
Thus, there is no information loss in this process.

Let PAR(Wi) be the parity calculated over sub-window
Wi. We select windows based on the mutual information
I(Y,PAR(Wi)), as this quantity is a lower bound for the
information contained in the window. Subwindows Wi as-
sociated to each cluster are ranked in decreasing order of
mutual information I(Y,PAR(Wi)) and the first (i.e. most
informative) k windows are selected.

6. Experimental Results

We performed experiments with different sets of im-
ages, using the above methodology. All experiments follow
a common scheme. Given a set of input-output image pairs,
a large rectangular window is defined and the algorithm for
finding the interaction reducing transform is applied. The
quality of the transform is assessed by comparison between
pixel interactions (pre-transform) and parity function inter-
actions (post-transform). In experiments reported below, the
indices (i, j) were chosen in a deterministic order and the
number of iterations was defined so that each combination
(i, j) was used at least five times. This process showed to
significantly reduce average interactions in all image sets
studied.

Two-stage binary operator design was then performed.
For that the resulting clusters were treated as sub-windows,
which were ranked in decreasing order of mutual infor-
mation I(Y,PAR(Wi)). After that one first level opera-
tor ψi was trained for each sub-window in the sequence
(W1,W2, . . . ,Wn). A sequence of second-level operators
was then trained by adding one first-level operator at each it-
eration, according to the window order. For instance, the ini-
tial second-level operator combines the outputs of the first-
level operators trained on windows W1 and W2; the i-th

second-level operator combines the outputs of the first-level
operators trained on windows W1 through Wi+1. The same
input-output image pairs used to find the windows were em-
ployed in training both the first-level and second-level op-
erators. The assessment of second-level operators was per-
formed with a set of testing images, disjoint with the train-
ing set. For further evaluation, we also designed a single-
level operator over the large window and compared its test
error with the one obtained with the two-stage operators.

6.1. Text Segmentation

Identification of text regions is an important task in doc-
ument processing and analysis. In this experiment, four
input-output image pairs similar to the ones shown in Fig. 2
were used for training and another four pairs were used for
testing. A 5 × 7 window was the large window employed
for two-level training. Numerical evaluation of the interac-
tion reduction is summarized in table 2. Some of the result-
ing windows are shown in Fig. 1.

Interaction Information (bits)
Max Min Mean Abs (Std Dev)

Pixels 0.0662 -0.0062 0.0221 (0.0107)
Parity functions 0.0139 -0.0267 0.0021 (0.0032)

Table 2. Values for maximum and minimum
interactions and mean value of absolute in-
teraction, text segmentation images.

Figure 1. Windows W1 through W4 for text
segmentation

Figure 2 depicts the behavior of the training and test-
ing errors as more windows are added to the training of the
second-level operator, jointly with the test error achieved
with a single-level operator trained on the large window. In
Fig. 3 we show the result of the best two-level operator for
one image in the test set.

6.2. Texture Recognition

Two input-output image pairs similar to the ones shown
in Fig 6 were used for training and another three pairs were

2 4 6 8 10 12 14 16 18

Number of windows

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
A

E

Texture Segmentation

2-level-training

2-level-testing

single-testing

Figure 2. Error in text segmentation.

Interaction Information (bits)
Max Min Mean Abs (Std Dev)

Pixels 0.0776 -0.1748 0.0212 (0.0202)
Parity functions 0.0244 -0.0401 0.0056 (0.0047)

Table 3. Pre and post transform interaction
values for texture recognition images.

used for testing. A 7×7 window was the large window em-
ployed for two-level training. Evaluation of interactions is
presented in Table 3. Some of the resulting windows are
shown in Fig. 4. Figure 5 depicts the behavior of the train-
ing and testing errors as more windows are added to the
training of the second-level operator, jointly with the test er-
ror achieved with a single-level operator trained on the large
window. Figure 6 shows the result of the best two-level op-
erator for one image in the test set.

6.3. Summary of Results

The proposed algorithm for reducing interactions
showed to be effective, since in all cases there has been sig-
nificant reduction in average magnitude of interactions. In
Table 4 we compare, for each image set, the best two-level
operator with the single-level operator trained on the large
window. We observe that the best two-level operator al-
ways outperforms the single-level one, which means that
the proposed approach for window selection leads to ef-
ficient use of the information contained in the large win-
dow while taking advantage of the improved statistical
precision provided by estimation over a smaller set of vari-
ables.

Figure 3. Result of text segmentation. Test,
ideal and best two-level operator result.

Figure 4. Windows W1 through W4 for texture
recognition

7. Concluding Remarks

We have presented a method for finding a transforma-
tion of binary variables that reduces interactions between
them. The method showed to be effective in fulfilling this
goal. Based on this method, a heuristic was proposed to find
sub-windows used in two-stage design of binary image op-
erators. The operators thus designed outperformed the cor-
responding single-level operators trained over the full win-
dow. Future work will address the issue of selecting the
number of windows used in second-level operator training.
Another possible improvement is using the values of inter-

2 4 6 8 10 12 14 16 18

Number of windows

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
A

E

Texture Segmentation

2-level-training

2-level-testing

single-testing

Figure 5. Error in texture recognition.

win Min 2-level MAE Single-level MAE
Text 13 0.0326 0.0382

Texture 8 0.0817 0.0918

Table 4. Minimum MAE for 2-level operators
and MAE for single-level operator trained on
large window.

actions obtained after the transformation for guiding win-
dow selection. Although the interaction reduction transfor-
mation was used here in the context of binary image opera-
tor design, the method could be generally used for learning
Boolean functions.

Acknowledgements

C. S. Santos acknowledges support from FAPESP (grant
05/04614-7) and from CNPq. N. S. T. Hirata acknowledges
support from FAPESP (grant 04/11586-7) and from CNPq
(grant 312482/2006-0). R. Hirata Jr. acknowledges support
from CNPq. The authors would like to thank the reviewers
for their valuable suggestions.

References

[1] J. Barrera, E. R. Dougherty, and N. S. Tomita. Automatic Pro-
gramming of Binary Morphological Machines by Design of
Statistically Optimal Operators in the Context of Computa-
tional Learning Theory. Electronic Imaging, 6(1):54–67, Jan-
uary 1997.

Figure 6. Result of texture recognition. Test,
ideal and best two-level operator result.

[2] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. Wiley series in telecommunications. John Wiley and
Sons, 1991.

[3] N. S. T. Hirata. Binary image operator design based on
stacked generalization. In Proceedings of the XVIII SIB-
GRAPI, pages 63–70, 2005.

[4] N. S. T. Hirata, J. Barrera, R. Terada, and E. R. Dougherty.
The Incremental Splitting of Intervals Algorithm for the De-
sign of Binary Image Operators. In Proceedings of the 6th
ISMM, pages 219–228, 2002.

[5] A. Jakulin and I. Bratko. Analyzing attribute dependencies.
In 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD 2003), 2003.

[6] D. C. Martins Jr., R. M. Cesar Jr., and J. Barrera. W-operator
window design by minimization of mean conditional entropy.
Pattern Anal. Appl., 9(2):139–153, 2006.

[7] W. J. McGill. Multivariate information transmission. Psy-
chometrika, 19:97–116, 1954.

[8] D. A. Vaquero, J. Barrera, and R. Hirata Jr. A maximum-
likelihood approach for multiresolution W-operator design. In
Proceedings of the XVIII SIBGRAPI, pages 71–78, 2005.

[9] D. H. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

