
itkFlowRun – a Visual Programming Tool for ITK Image Filters

Diego Ferreira dos Santos(1), Eduardo Tavares Costa(1), Marco Antonio Gutierrez(2)

1: School of Electrical and Computing Engineering (FEEC) and Center for Biomedical
Engineering (CEB), State University of Campinas (UNICAMP), Campinas, Brazil

2: Informatics Division, Heart Institute (InCor),
University of São Paulo Medical School, São Paulo, Brazil

santos@ceb.unicamp.br

Abstract

itkFlowRun is an open source software that aims to
be an extension of Insight Registration and
Segmentation Toolkit (ITK) to rapidly and easily
create image filters pipeline through a visual
programming tool environment. It has been developed
for Linux environment using the following libraries:
Fast Light Toolkit (FLTK), Boost and ITK. This paper
presents an overview of the main functionalities and
describes the software architecture and plug-in
mechanism, allowing third-party plug-ins to be
developed. itkFlowRun is still being developed and
will be released in the near future.

1. Introduction

The Insight Registration and Segmentation Toolkit
(ITK) is an open source software to perform
registration and segmentation of medical images [1,2].
It has several image filters ready to use and new tools
can be incorporated. ITK is implemented in the C++
language using Generic Programming Techniques, a
way to generalize software components for easily reuse
in a wide variety of situations [3, 4].

The major problem in implementing and visualizing
ITK image filters pipeline is that ITK is a library of
methods and not really an end-user application.
Moreover, it is necessary to develop code in high level
language and compile it every time the user modifies
the filters pipeline.

One alternative to improve the development of
methods based on ITK, is to incorporate a Visual
Programming Tool to rapidly build, visualize and test
image filters pipeline. With this approach, filters or
modules can be represented as a network of
interconnected modules. Each module can have input
or output ports used to receive the data flow, as well as
internal parameters to control the module execution.
Modules communicate with each other through
connections to these ports. The implementation details

of each module are transparent to the user. The user
has only to connect modules in the right order and set
some control parameters, when necessary for the filter
execution.

Some complex frameworks exist that provide this
functionality, some of them are free. As examples we
can cite the MeVisLab and SCIRun [5], being both
IDEs for visual data-flow programming. One of the
main problems of these libraries is that they do not
provide a method to use all existing ITK data types and
both of them use XML file to provide ITK filters
information, being necessary that the user know the
right syntax to create new modules, what is not the
case in our proposed software.

2. Methods

Our proposed framework, named itkFlowRun, is an
open source software developed in C++ and a set of
open source software toolkits: ITK
(http://www.itk.org) for image processing, BOOST
(http://www.boost.org) for graph algorithms, CMAKE
(http://www.cmake.org) for building and FLTK
(http://www.fltk.org) for graphical user interface.

In itkFlowRun, modules may have one or more
input or output ports. The output port of a module is
connected to the input port of another module. The
algorithm chosen to parse modules connections from
the diagram was the Topological Sort algorithm.

As ITK DataObject is the base class to all ITK
Objects like images, cells, meshes, and others [1], all
output data of ITK image filters are casting to ITK
DataObject class. The data of a module input port is a
pointer to the ITK DataObject of another module
output port connected to it.

The main classes developed in itkFlowRun are:
userInterface – main itkFlowRun graphical user
interface; moduleFactory – an object factory. All
modules loaded dynamically are put in a linked list;
moduleBaseGUI – a module container. This
implements a canvas to draw modules, draw module

connections and so on; moduleGraph – implements a
graph data structure to store module connections;
moduleButtonGUI – implements a graphical button
for modules; moduleBase – base for all modules
(plugins) developed; modulePort – base to all
input/output ports; moduleVars – manage and store all
module variables; moduleEditor – create new header
and source files (to build a new plugin automatically)
according to parameters set by the user;

All modules (plug-ins) were developed in C++ and
the class must be inherited from moduleBase class. To
save user time, we developed a method to create and
build modules automatically. The user has only to set
some control parameters, such as: class name, ITK
object name, number of input or output ports and so
on. The application generates the appropriate files to
build the desired plug-in using all possible ITK data
types and dimensions ranging from 2D to 6D.

3. Results

The proposed framework provides a Graphical
Interface to rapidly and easily build ITK image filters
pipeline. The visual programming can be used to
connect two or more image filters through a visual data
flow modeling tool. The user can choose, at run time,
the data types (all supported by ITK) for input and
output data for each module. At each module, there is a
semaphore to show the execution status: Green:
module was executed; Yellow: module is executing
and Red: module executed with error.

Figure 1 - An example of itkFlowRun application

In Figure 1, all active modules are in the left side of
the main window. In this example, we constructed a
diagram with three available modules: “Open
DICOM”, to read DICOM image files, “Derivative”, to
calculate the spatial image derivatives and “Bin
Magnitude”, to compute the gradient magnitude. We
set control parameters to the Derivative modules. In

each module, we can see the output data (image). The
two images shown in Figure 1 are the output images
for “Open DICOM” and “Bin Magnitude” modules,
respectively.

4. Conclusion

In this paper we briefly describe itkFlowRun, an
open source environment to rapidly and easily build
ITK image filters pipeline.

With itkFlowRun it is less exhaustive to build and
to modify image filters pipeline, when compared with
the traditional method used by ITK users. The process
of creating and managing the pipelines, module
execution and connection becomes more intuitive,
faster and easier.

Another important feature is the ability to accept
third-party plug-ins. When a plug-in has been created,
it becomes available for use and no more code has to
be implemented because everything is done using
visual programming. The efforts for coding and
building every change in the pipeline disappear with
the use of itkFlowRun. No more detailed knowledge of
ITK syntax is needed if the user is not familiar with
programming languages when developing new
modules.

5. References

[1] Ibanez, L., Schroede, W., Ng, L., Cates, J., and the
Insight Software Consortium., The ITK Software Guide,
U.S.A. 2003.

[2] Johnson, C.R., and Hansen, C.D., The Visualization
Handbook, Elsevier Academic Press, Oxford, 2005.

[3] Alexandrescu, A., Modern C++ Design: Generic
Programming and Design Patterns Applied, Addison
Wesley, 2001.

[4] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.,
Introduction to Algorithms, Second Edition, MIT Press,
USA, 2001.

[5] Ingmar, B., Robert, V.U., Ivo, W., Luis, I., and Jan-
Martin, K. “Comparison of Four Freely Available
Frameworks for Image Processing and Visualization That
Use ITK”, IEEE Transactions on Visualization and Computer
Graphics, Vol. 13, N. 3, pp. 483-493, 2007.

