Application-independent accurate mouse placements
on surfaces of arbitrary geometry

Harlen Costa Batagelo

Wu Shin Ting

State University of Campinas
School of Electrical and Computer Engineering
Campinas, Sao Paulo, Brazil
{harlen,ting } @dca.fee.unicamp.br

Abstract

Most direct manipulation tasks rely on precise place-
ments of the cursor on the object of interest. Commonly, this
requires the knowledge of distinct application-dependent
geometry attributes of this object computed on the CPU.
In this work, we present a simple yet general GPU-based
framework for computing such attributes without depend-
ing on application-specific algorithms. In particular, it pro-
vides, for each pixel of the rendered model, elements of dis-
crete differential geometry that require only the vertex data
and 1-ring connectivity of each vertex stored in video mem-
ory. We validate our framework by showing how, only by
providing correct mouse placements even when the geome-
try is modified on GPU, it can support the implementation
of many direct manipulation tasks presented on the litera-
ture. Implementation results are presented.

1. Introduction

Pointing and selecting (picking) an object of interest us-
ing a pointing device are fundamental actions of any inter-
active graphics application based on the direct manipulation
interaction style [10]. By combining these basic tasks, one
can devise more complex interactions such as 3D painting,
geometry creation, placement and editing.

Traditionally, the data required for precise 3D direct ma-
nipulation actions is computed with respect to the original
geometry, mostly in analytical expressions stored in system
memory. This integrated approach, widespread by the Uni-
fied Graphics Architecture (UGA) [14], allows that an inter-
action processing takes advantage of continuous geometric
modeling techniques associated with the manipulated ob-
jects to generate appropriate visual feedbacks. For render-
ing, such geometry must be converted to a set of primitives
that are supported by the graphics library. The most known

graphics primitives are triangle meshes. Two issues may,
however, arise from this paradigm:

1. Loose of generality: It is desirable to have a graphical
user interface (GUI) toolkit designed to make graphi-
cal interactive application development easier. In the
UGA approach, different representations of models
will require different implementations of interaction
algorithms for performing the same interaction task.
For example, ray picking with models represented as
parametric and implicit functions will require the im-
plementation of a particular intersection algorithm for
each representation.

2. Incoherence between visualization and interaction: A
unambiguous mapping between what is presented to
the user and what is represented in the underlying
system is also an essential ingredient for assisting a
user in direct manipulation tasks. On today’s graph-
ics processing unities (GPUs), the mesh geometry may
be further deformed by nonrigid transformations on a
vertex or geometry processor. Since the geometry at-
tributes for interaction are still computed on the basis
of the original geometry, this may introduce incoher-
ences between what the user acts on and what the event
handler can recognize from the user’s action. Such is-
sue may be worsened when considering fragment per-
turbation due to 3D detail mapping techniques, which
potentially increases the difference between the origi-
nal geometry and its final appearance on screen.

In order to solve these issues, we have investigated a
set of elementary functions for direct manipulations. Ac-
cording to [12], only two application-dependent differential
geometry data suffice for interactive placement of a cursor
on the surface of arbitrary geometry while the user smoothly
moves the input device cursor on it. The data are the 3D
position of the point P under the cursor’s hotspot and the
normal vector of the surface at P. Since these two data



are also used in a general rendering pipeline such as those
specified by OpenGL, it is possible to deviated from the
UGA paradigm and propose, in analogy to the rendering, an
application-independent surface snapping algorithm. This
was extended in [1] to heed the evolution of the program-
mable graphics hardware. In Section 2 we discuss these
results in the context of known previous works on devising
application-independent interaction methods.

Recently, there has been increasing interest in develop-
ing tools that assist a user to place the cursor on specific fea-
tures of the geometry which she/he interacts with. Among
them, we may mention snapping to valleys and ridges of
the geometry [13], hatching strokes in a pen-and-ink style
painting according to the principal directions [8], and pro-
ducing interactively suggestive contours [4]. A careful
analysis, summarized in Section 3, leads us to conclude that
the fundamental data of all these manipulation tasks may be
reduced to differential geometry quantities of higher order,
namely curvatures and their derivatives. As far as we under-
stood, the evaluation of the differential geometry properties
of higher order is carried out on the CPU, thus all these ma-
nipulation tasks are limited to non-deformable geometry.

The geometry ultimately sent to the graphics hardware
is represented according to the primitives supported by the
GPU. We ask ourselves whether we may take advantages of
this geometry to estimate, on the GPU, differential geom-
etry quantities such as tangent frames, local curvature ten-
sors and covariant derivative of curvature tensors, as well
as positioning data, identification data and user-defined val-
ues. If these quantities are estimated after geometry de-
formation on the vertex processor, these deformations will
be taken into account for interaction. Thus, we may pre-
cisely guide the movements of a cursor on arbitrary geom-
etry, even when it is deformed on the GPU in a per-vertex
level. An estimator for curvatures and their derivatives on
the GPU was presented by [2].

In this work we propose an interaction framework in
which differential geometry attributes of meshes are com-
puted in accordance with geometry modifications along a
rendering process, without requiring application-specific al-
gorithms or a scene database on system memory. These
data, calculated on the basis of the current mouse position,
are sufficient for placing the cursor on the screen according
to the user’s actions and intentions. For detecting the mouse
movements, we still need to listen to the mouse events
delivered by a window system residing on CPU. Hence,
our framework also provides an interface to a windowing
system. Moreover, our framework returns the application-
specific attributes of the objects under the cursor’s hotspot
for appropriate visual feedbacks of the model under manip-
ulation, such as coloring or texturing one of its facets. In
Section 4 the data and control flow of this framework are
described thoroughly.

With our proposed framework, the development of so-
phisticated 3D interactive applications becomes an easier
task. From a set of on-the-shelf functions, the application
developer only configures which differential geometry at-
tributes are required for each task, and the framework will
estimate them for the primitives sent to the GPU. In Sec-
tion 5 we present results from an implementation and sum-
marizes the paper in Section 6.

2 Related work

In 3D, selection is usually computed by a ray picking
procedure which consists of propagating a ray in world
space from the viewpoint through the cursor’s position, then
testing the intersection between this ray and the geome-
try stored in a scene database. The selected geometry is
the intersected geometry closest to the projection plane.
Besides identification data, additional geometry data com-
puted at the intersection point may be used for the compo-
sition of more complex tasks. For example, texture coordi-
nates at the intersection point may be used for 3D painting,
and barycentric coordinates of the intersection point in the
pointed triangle can be used in a mesh cutting operation.

The OpenGL API provides an application-independent
selection approach using a rendering mode called selection
mode [6]. In this mode, if a geometry intersects a user-
defined clip volume, a selection hit is generated. Each se-
lection hit reports an ID of the geometry and the minimum
and maximum depth values of the geometry inside the clip
volume. Since the selection hits are computed after ver-
tex processing, it consistently takes into account geometry
modified in the vertex processor. However, fragment per-
turbation is not considered and interaction tasks are limited
to tasks based on identification and positioning data.

Positioning is often used with constraints that aim at im-
proving the precision of the cursor placement. Bier [3] in-
troduced the idea of a snap-dragging skitter, a 3D cursor
controlled by a 2D pointing device. When constrained by
a gravity function, it automatically snaps to nearby points,
curves or surfaces in the scene. The skitter, also called
triad cursor, gives an additional visual cue to the user, as
it shows the 3D position and orientation of the primitive at
the snapped point. It, however, requires the local tangent
frame at the point of interest. To support this, the traditional
ray picking algorithm is extended to return additionally the
normal vector at the intersection point and the correspond-
ing primitive identifier. However, since the intersection tests
are computed on the CPU, deformation of geometry per-
formed on the GPU is not taken into account.

Wau et al. [12] presented a strategy to smoothly track the
triad cursor’s motion on a surface of arbitrary geometry only
on the basis of the tangent frame of the manipulated primi-
tive at the 2D cursor’s current location. This tangent frame



is defined by the mouse drag direction and the normal vec-
tor of surface at the point nearest the mouse position. The
position of the cursor is adjusted before re-displaying it on
the screen. Performing if continuously over the frames pro-
duces the perception that the cursor snaps to the surface.

Later, Batagelo and Wu [1] introduced the idea of
processing these data directly on the GPU and storing the
results into off-screen geometry buffers (g-buffers [9]) as
pixelwise encoded colors. By reading back and decoding
the contents of the g-buffers at the pixels pointed by the 2D
cursor, 3D position and orientation of the visible rendered
surfaces are obtained for snapping a triad cursor to them.
Barycentric coordinates and identification of primitives are
handled similarly. This technique takes into account both
vertex and fragment level deformations. It is also simple
to integrate with existing applications and it is not tied to
a particular API. As a drawback, however, orientation data
can only be computed if the vertex deformation function is
differentiable, as the orientation data is obtained by com-
puting partial derivatives of the deformation function. In
addition, due to the reduced number of attributes computed,
the algorithm is pretty much restricted to picking, surface
snapping and a simple 3D painting technique.

Our framework increases the range of attributes that may
be encoded in the g-buffers by estimating elements of dif-
ferential geometry on the GPU. It also allows the use of
user-defined per-vertex attributes for both indexed and non-
indexed triangle meshes, and per-fragment attributes. These
features allow the implementation of a wider range of inter-
action tasks, as we analyze in the next section.

3 Case studies

In this section we present different known 3D direct ma-
nipulation tasks, emphasizing its implementation aspects.
The goal is to show that the essential data that they require
may be reduced to the per-pixel differential geometric ones.

3.1 Picking

Picking permits to identify a specific object among all
visible and detectable objects displayed on the screen.
Common visual feedback for mouse picking is to highlight
the primitive pointed by a free-movement cursor. In the par-
adigm of storing per-pixel interaction data, each pixel of the
g-buffer contains an ID value [11]. The ID in the pixel un-
der the cursor’s hotspot identifies the selected model. In
order to select all models intersected by the picking ray in a
front-to-back order, the following sequence of steps may be
used: (1) Select the frontmost model; (2) Render the scene
again, but excluding the already selected model(s); (3) Re-
peat from step 1 until the pixel under the cursor’s hotspot
does not contain any ID. The same approach applies for

identifying faces. In each iteration, the frontmost face is
removed until there are no more face IDs.

3.2 Interaction maps

With texture mapping one may glue a rectangular array
of data, or texture map, to the geometry. When the indi-
vidual values in the texture map are the event-triggering
data, they are called interaction maps. Provided that the
contents of these maps are encoded for each pixel of the
g-buffer, we may define distinct responses to each pixel.
In this way, when the free-movement cursor hovers pix-
els coincident with the mapped interaction surface, specific
tasks may be automatically performed. Pierce and Paush [7]
show that this is particularly useful for accurate interac-
tions with image-based models and models where the tex-
ture map contains most of the detail.

3.3 Snapping

Snapping a cursor to a feature of interest whenever it gets
nearby is desired in most interactive applications. It allevi-
ates the time consuming precise position of the mouse on
the screen.

Snapping to vertices consists of constraining the cur-
sor location to the vertex which is closest to the current
pointer’s location. It may be done by rendering the geome-
try as points, then computing the screen-space distance be-
tween the pixels with rendered vertices and the pixel under
the cursor’s hotspot. The cursor is moved to the position
of the nearest pixel with a rendered vertex. The same idea
applies for snapping to edges. In this case, the geometry
is rendered in wireframe mode. This can also be used for
snapping to the surface’s contours or other image features
by computing the data only to pixels that coincide with the
features. For surface snapping, it is usual to visually feed-
back through a triad cursor aligned with the tangent frame
of the surface at the position pointed by the 2D cursor, as
in Bier’s snap-dragging technique. To do that, we should
also include the differential geometry attributes of depth
(for computing 3D position) and tangent frame, besides ID.

3.4 3D painting

A simple painting of the 3D objects in a rendered scene
may be accomplished by a one-to-one mapping between
brush samples and texture samples. The brush samples are
indeed points in the neighborhood of the cursor’s hotspot.
Hence, we may use the texture coordinates of the pixels
around the brush position for changing the corresponding
texture map. Painting in screen space is handled similarly.
Instead of changing the texture map, the brush samples are
splatted onto the surface as new primitives that use the 3D



position of the surface fragments rendered in each pixel.
Though 3D painting can be done with a free-movement cur-
sor, surface snapping may be used for showing the 3D brush
location on the surface.

In a more sophisticated painting tool, the style of the
brush samples may vary according to the geometry shape.
In a pen-and-ink style painting, hatching strokes may be ori-
ented in the direction of the principal curvatures in order to
enhance shape cue, or emphasized in parts coincident with
suggestive contours at a given viewpoint. This is done by
constraining the cursor’s movement to these features, which
are calculated from higher-order differential geometry ele-
ments of the pixel under the cursor’s hotspot.

3.5 Geometric snapping

Geometric snapping extends the notion of image snap-
ping [5] to 3D meshes [13]. When the user selects a vertex
of the mesh with the cursor, the cursor moves to a nearby
geometric feature based on the evaluation of a movement
cost function when the cursor moves from a vertex to an-
other. This requires the availability of differential geometry
elements for any point of the mesh.

A Gaussian smoothing filter may be used in order to blur
the approximate curvatures before applying the cost func-
tion. This softens up local minimums and emphasize global
minimums in which the cursor will snap to.

In our paradigm of using per-pixel interaction data, the
principal curvatures of the mesh may be stored for each
pixel in a user-defined screen region around the cursor. An
image-space Gaussian filter is used to smoothen such val-
ues. The result is used in the evaluation of a per-pixel move
cost function, as in the image snapping technique. As the
cursor moves to a neighboring pixel, the procedure is re-
peated until the cursor reaches a global minimum feature.

4 Framework

The case studies lead us to conjecture that, at least
for most known applications, the differential geometry at-
tributes associated to the pixel pointed by the cursor are suf-
ficient for correctly guiding the movements of a cursor on
a surface of arbitrarily geometry. This motivates us to pro-
pose a unified architecture for storing and accessing these
attributes while a user interacts in order to provide correct
responses.

The framework is built on top of the graphics API and
is visible to the programmer as an additional set of 3D
interaction-supporting commands. The underlying code
benefits from the general-purpose stream computation of
the GPU to estimate the differential geometry elements, and
inherit all interfaces to window system that a graphics card
supports.

The framework is window system independent in the
sense that it only provides functions to estimate the differ-
ential geometry attributes of discrete meshes at the focused
points, but is not responsible for capturing these points.
How to receive the events from a window system is of
charge of the application, which issues the calls to get ap-
propriate data from the g-buffers for further processing. To
accomplish this, the application must initialize the inter-
action context by specifying the differential geometry at-
tributes to be computed and the semantics bindings to be
assigned for correct interpretations, as explained in Sec-
tion 4.2. The framework uses such data to automatically es-
timate the differential geometry elements of the model and
to encode them into the g-buffers using the output interface,
as shown in Section 4.3.

4.1 Model

The processing stages of the framework are integrated
into the render loop of the application, as illustrated in Fig-
ure 1. Stages 1, 2, 3, 4 and 5, which are carried out on the
GPU, are backed up by user-defined callback functions con-
taining the rendering calls. Just before rendering the actual
geometry, the application issues a command (stage 1) that
updates the geometry data according to user-defined per-
vertex deformation shaders. A new estimation of the local
differential geometry attributes is automatically performed
(stage 2) and the results are cached into render textures for
later use. After updating the original geometry according
to the deformed attributes cached by the previous stage, the
application may modify these attributes again, now with the
computed differential geometry attributes (stage 3). During
rasterization, the computed per-vertex attributes, as well as
the user-defined attributes, are linearly interpolated to the
fragments. After that, they are updated by per-fragment
deformation shaders (stage 4) and encoded as colors into
the g-buffers (stage 5). Usually after the actual rendering
(not mandatory), the application may request the contents of
such g-buffers (stage 6). These buffers are transfered back
to the system memory.

Each stage is detailed as follows:

1. Modification of vertex attributes: This is performed
if the model undergoes a changing in its vertex at-
tributes. For each model, it starts by the framework
invoking a callback function containing the drawing
call of the model. At the vertex processor, a user-
defined deformation shader modifies the original ver-
tex attributes and produces a final geometry, still in ob-
ject space, that can be used for the estimation of differ-
ential geometry quantities. The attributes of the de-
formed model are written to render textures.

2. Geometry attributes computation: This stage esti-



CPU GPU

Render loop

(1) Modification of Interaction framework
odification o

vertex attributes

Update per-vertex

L

attributes of

V7

original geometry

(2) Computation of
geom. attributes

User-defined

render callbacks

using the original
geometry

-

(3,4) Modification of

vertex and fragment
attributes and (5)
attribute encoding

Modify vertex
attributes?

Modification of
vertex attributes

n

Actual
rendering

Render-textures

with

Cor

attributes?

(3) Modification of|
vertex attributes

Rasterization

Geometry
attrib. computation

mpute geom

I

Modify fragment

(4) Modification | Yes
of fragment
attributes - attributes?
No

Render-textures
wit

Off-screen
g-buffers with

attributes

(5) Fragment
attributes encndlng/

attributes encoded attributes

(6) Attributes
decoding

Figure 1. Framework’s processing stages (gray shaded region) and the application’s render loop.

mates the differential geometry quantities at each ver-
tex of the models deformed in the stage of modifica-
tion of vertex attributes. As in the previous stage, this
starts by the framework running a callback function
with the drawing call of the model. For each vertex, the
GPU reads the deformed vertex attributes by sampling
the render textures of the previous stage, and sampling
pre-computed textures with connectivity data in order
to compute the geometry quantities. The results are
written to new render textures.

6. Fragment attributes decoding: In this stage the g-

buffers are transfered to system memory. The at-
tributes are decoded and made available to the appli-
cation.

4.2 Input interface

The data required for the framework to compute the per-

pixel attributes for interaction are the following, for each

model under interaction:

3. Modification of vertex attributes: Also triggered o Geometry data: The vertex and index buffers of the

by a callback function, this stage starts in the vertex
processor by sampling the render textures of the pre-
vious stages in order to update the vertex attributes
before rasterization. As in the first stage, a user-
defined deformation shader modifies the vertex at-
tributes. However, these attributes now include the
differential geometry properties just computed. This
stage is useful for performing operations that depend
on these new properties, such as applying a geometric
transformation to a tangent frame that will be used by
a 3D detail mapping algorithm in the fragment shader.

4. Modification of fragment attributes: During rasteri-
zation, the attributes computed on the GPU and defined
by the user in the vertex buffer of the original geometry
are linearly interpolated across the primitives. In the
fragment processor, these fragment attributes are then
modified by the user-defined deformation function.

5. Fragment attributes encoding: This is done just after
the previous stage, in the same fragment shader. The
modified attributes are encoded as color components
of the g-buffers.

original geometry used for the actual rendering, but
with an additional user-defined value that contains a
0-based integer index of each vertex. These indices
are used to determine the addresses of the texels of
the render textures that cache the geometry data af-
ter attribute modification. In our implementation, the
pointers to these buffers are set through commands
SetVertexBuffer and Set IndexBuffer.

When second and third order differential geometry at-
tributes are computed, the framework also requires the
list of 1-ring neighborhood of each vertex of the origi-
nal geometry. In our implementation, this is computed
internally from the vertex and index buffers. These
geometry and connectivity data are transferred to tex-
tures in video memory that will be used for computing
the differential geometry quantities.

Attributes to compute: The set of attributes which
should be created on-the-fly or processed from the de-
formed geometry in a per-vertex level, and then en-
coded for each interpolated fragment. In our imple-
mentation, the command SetAttributes is used to



specify any combination of the following attributes:
(1) Depth in normalized device coordinates; (2) Nor-
mal vector in object space; (3) Texture coordinates;
(4) Tangent and bitangent vectors aligned according to
the parametrization of the texture coordinates, in ob-
ject space; (5) Coefficients of the curvature tensor; (6)
Principal curvatures and principal directions; (7) Coef-
ficients of the tensor of curvature derivative; (8) User-
defined value, which may be defined both for indexed
and non-indexed geometry. For indexed geometry, the
data is shared by all adjacent faces that use the vertex
(e.g., model and vertex IDs). For non-indexed geom-
etry, each vertex may have a different value for each
adjacent face (e.g., face IDs and weights of barycen-
tric equations).

Rendering callbacks: User-defined callback func-
tions containing the graphics API commands for set-
ting up the render states used by the deformation
shaders, and for issuing the drawing calls for indexed
and non-indexed primitives (e.g., glDrawArrays in
OpenGL, or DrawPrimitive in Direct3D) using the
vertex buffers of the original geometry. In our imple-
mentation, these functions are set through the com-
mands SetUpdateCallback (callback function for
triggering stages 1 and 2) and SetRenderCallback
(callback function for triggering stage 3, 4 and 5).

Semantic bindings: A mapping between the usage se-
mantic of each element of the original vertex buffer
and the semantic interpreted by the framework. The
semantics of the vertex buffer are those specified by the
graphics API (e.g., texture coordinates, normal vector,
vertex color and point size). They may be mapped by
the command BindSemantics to one of the following
semantics of the framework: (1) Texture coordinates
used to compute the tangent and bitangent vectors; (2)
Vertex index; and (3) User-defined value for indexed
geometry and non-indexed geometry.

The binding of the vertex index semantic is the only
mandatory. The vertex element containing the vertex
position does not require this mapping, as it is always
considered a vertex position by the framework.

Deformation shaders. Definition of shader functions
that accept as input a data structure containing the non-
deformed vertex or fragment attributes and return the
same data structure with the attributes modified. For
the vertex deformation shader used in stage 1, this
data structure contains the vertex position and the addi-
tional attributes defined by the semantic bindings. For
stages 3 and 4, it also contains the differential geome-
try properties computed in stage 2.

40 7
351 mTeapot EHorse COBunny -
30 A1
25 4
é 20 1
15 4
10 A

Attribute

Figure 2. Processing time of different at-
tributes.

In our implementation, these shaders are spec-
ified with commands SetPreVertexDeform
(stage 1), SetPostVertexDeform (stage 3) and
SetPixelDeform (stage 4).

4.3 Output interface

The main data returned to the application are the per-
fragment attributes stored for each pixel of the g-buffer.
This is done by a command Decode that returns a pointer
to the contents of the g-buffers.

S Implementation and results

The framework have been implemented as a C++ library
in OpenGL and Direct3D. It is composed of two classes:
one that initializes and manages the models under interac-
tion, and another that is created through the manager class
and contains the data specific to each model. In total, its in-
terface consists of about 50 distinct commands that may be
needed to produce accurate mouse placements in a graphics
interactive application.

The performance of the framework depends mostly on
the performance of the shaders used in stages 1, 3 and 4,
followed by the number and type of attributes processed
for each vertex. Figure 2 summarizes the average time,
in milliseconds, obtained for computing different attributes
on a Teapot (2,082 vertices), Horse 48,484 (vertices) and
Bunny model (72,027 vertices). The attributes are: (a) No
attributes; (b) Depth; (c) Texture coordinates; (d) User-
defined value for indexed geometry and (e) non-indexed
geometry; (f) Normal vector; (g) Tangent frame; (h) Cur-
vature tensor; (i) Curvature tensor with principal directions
and curvatures; (j) Tensor of curvature derivative. The test
platform was an AMD Athlon 64 3200+ (2.2 GHz) 1 GB
RAM, with a NVIDIA GeForce 7900 GTX with 512 MB



VRAM. In these results, the stage 1 was executed even
when no attributes were computed. The overhead shown
in (a) is mainly due to the dynamic flow control instruc-
tions and texture sampling instructions used in the vertex
shaders of stages 1 and 3. Though the overhead for estimat-
ing the differential geometry elements is most evident, it is
significantly more efficient than a CPU-based estimation, as
shown in [2].

In order to validate our hypothesis that per-pixel at-
tributes composed of differential geometry elements and
user-defined data suffice for precisely positioning the mouse
in accordance with the need of a broad range of applica-
tions, the framework was used for prototyping some of the
interaction tasks presented in Section 3. Figure 3 shows
snapshots of these applications: (a) Picking; (b) Determin-
ing all faces along the picking ray; (c) Interaction maps;
(d) Surface snapping; (e) Snapping to borders; (f) Painting
and sculpting a relief mapped quad; (g) Snapping to princi-
pal directions; (f) Geometric snapping. In the following we
describe how they differ with respect to the settings of the
commands for inputting data in the framework:

e Picking. We call setAttributes (USERDEFI) to in-
form that the per-pixel interaction data should contain
a user-defined value for indexed geometry: the model
ID. BindSemantics (TEXCOORD1 +— USERDEFI) is
used to inform that such value is defined in a set of
texture coordinates of the geometry’s vertex buffer.

o Interaction maps. SetAttributes (USERDEFI) in-
forms that the per-pixel attribute is a single user-
defined value. BindSemantics is not used, since the
user-defined value is not a vertex attribute of the vertex
buffer. Instead, we use SetPixelDeformto define a frag-
ment shader that samples the interaction map and writes its
value in the output register of the user-defined value.

e Snap to surface, vertex, edge or borders. We call
SetAttributes (DEPTH, TBN) to inform that per-
pixel interaction data should contain only a depth value
and a tangent basis. BindSemantics (TEXCOORDO
TEXCOORD) is used to inform that the texture coordinates
for computing the tangent vectors are found in the first set
of texture coordinates of the vertex buffer. According to the
type of cursor snapping desired, the callback functions set
with SetRenderCallback will trigger the rendering of
geometry with filled triangles (for surface snapping), wire-
frame (for edge snapping) or points only (for vertex snap-
ping). For snapping to borders, filled triangles are used, but
SetPixelDeform defines a fragment shader that filters
the fragments which do not lie on the borders of the rendered
model.

e 3D painting. For performing 3D painting in texture space,
we call SetAttributes (TEXCOORD) to inform that
the per-pixel attribute should contain only the mapped tex-
ture coordinates. BindSemantics (TEXCOORDO +—

TEXCOORD) informs that such texture coordinates are found
in the first set of texture coordinates of the vertex buffer.

e Geometric snapping. SetAttributes (DEPTH,
CURV) is called to inform that the per-pixel attributes
should be composed of a depth value, principal
curvatures and principal directions. We do not use
BindSemantics in this case, as the computation of
depth and estimation of curvatures will always use the
POSITION vertex attribute of the vertex buffer.

6 Conclusion

In spite of the increased flexibility of today’s GPUs for
performing geometry modeling and animation tasks without
the intervention of the CPU, few efforts have been made for
handling direct manipulation with 3D geometry deformed
in a programmable rendering pipeline. We conjecture that
the main hindrance roots in the design philosophy of the
existing graphics cards, which are window system indepen-
dent, whereas the success of a direct manipulation process-
ing relies on both the event handler of a window system and
the rendering pipeline of a graphics hardware. The more
flexible and powerful are the GPUs, the wider is the gap be-
tween what the event handler of a window system is able to
process on CPUs and what is rendered.

We have proposed an interaction framework that circum-
vents this ever growing distance problem between an action
triggering and its visual feedback. It supports the imple-
mentation of direct manipulation tools which consistently
take into account deformation of geometry on the GPU.
The main idea is to use the actual visualization pipeline to
process all the attributes required for each interaction task
and then to store such attributes in the image-space domain
as encoded pixel colors. Since the direct manipulation is
performed on the basis of pixel data, it may work with any
primitive handled by the rendering pipeline.

Our framework does not require a scene database in sys-
tem memory for computing the attributes, since geometric
information is obtained directly from the primitives stored
in video memory. In special, differential geometry quanti-
ties can be computed entirely on the GPU after the defor-
mations performed in a per-vertex level.

We have implemented the proposed framework as a C++
library in OpenGL and Direct3D, along with sample tools
that demonstrate that it can be used to implement a number
of direct manipulation actions presented in the literature.

It is worth mentioning that, because the estimation of the
geometrical quantities is done on the basis of vertices deliv-
ered by the application and the missing values are estimated
from linear interpolations, our framework cannot automati-
cally handle non-linear deformations performed in the per-
fragment level, such as per-fragment normal and depth per-
turbation due to normal mapping or relief mapping. In such



Picking (all intersections along the picking ray)

e

'
\ »

4>>\

£

s position: -0'48)/0,30, 2190

napping to princi

(0.28, -0.02, 0.96)
0.94, -0.17, -0.28)

(2)

Figure 3. Snapshots of the direct manipulation applications implemented with the framework.

cases, the user should implement a per-fragment deforma-
tion shader that updates the attributes according to the detail
mapping used in the actual rendering. As further work, we
intend to focus on this issue by using estimators of differ-
ential geometry properties on the basis of data available in
image space only.

References

[1] H. C. Batagelo and S.-T. Wu. What you see is what you

2

3

[4

[5

[6

]

]

—

]

—_

snap: snapping to geometry deformed on the gpu. In Proc.
of the 2005 Symposium on Interactive 3D Graphics and
Games, pages 81-86, Washington, DC, USA, April 2005.
ACM Press.

H. C. Batagelo and S.-T. Wu. Estimating curvatures
and their derivatives on meshes of arbitrary topology
from sampling directions. The Visual Computer, 2007.
http://dx.doi.org/10.1007/s00371-007-0133-8.
E. A. Bier. Skitters and jacks: interactive 3d positioning
tools. In Proc. of the 1986 Workshop on Interactive 3D
Graphics, pages 183-196, Chapel Hill, NC, USA, 1987.
ACM Press.

D. DeCarlo, A. Finkelstein, and S. Rusinkiewicz. Interac-
tive rendering of suggestive contours with temporal coher-
ence. In Proc. of the 3rd International Symposium on Non-
photorealistic Animation and Rendering, pages 15-24, New
York, NY, USA, 2004. ACM Press.

M. Gleicher. Image snapping. In Proc. of the 22nd Annual
Conference on Computer Graphics and Interactive Tech-
niques, pages 183—-190. ACM Press, 1995.

J. Neider, T. Davis, and M. Woo. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, release 1.

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

Addison-Wesley Publishing Co., Reading, MA, USA, 15t
edition, 1993.

J. S. Pierce and R. Pausch. Specifying interaction surfaces
using interaction maps. In Proc. of the 2003 Symposium
on Interactive 3D Graphics, pages 189-192, Monterey, CA,
USA, 2003. ACM Press.

E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-
time hatching. In Proc. of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, page 581,
New York, NY, USA, 2001. ACM Press.

T. Saito and T. Takahashi. Comprehensible rendering of 3-d
shapes. In Proc. of the 17th Annual Conference on Com-
puter Graphics and Interactive Techniques, pages 197-206,
Dallas, TX, USA, 1990. ACM Press.

B. Shneiderman. Direct manipulation: A step beyond pro-
gramming languages. IEEE Computer, 16(8):57-69, 1983.
H. Weghorst, G. Hooper, and D. P. Greenberg. Improved
computational methods for ray tracing. ACM Trans. Graph.,
3(1):52-69, 1984.

S.-T. Wu, M. Abrantes, D. Tost, and H. C. Batagelo. Picking
and snapping for 3d input devices. In Proc. of the XVI Brazil-
ian Symposium on Computer Graphics and Image Process-
ing, pages 140-147, So Carlos, SP, Brazil, October 2003.
K.-H. Yoo and J.-S. Ha. Geometric snapping for 3d
meshes. In International Conference on Computational Sci-
ence, pages 90-97, Krakow, Poland, June 2004.

R. C. Zeleznik, D. B. Conner, M. M. Wloka, D. G. Aliaga,
N. T. Huang, P. M. Hubbard, B. Knep, H. Kaufman, J. F.
Hughes, and A. van Dam. An object-oriented framework
for the integration of interactive animation techniques. Com-
puter Graphics, 25(4):105-112, 1991.



