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Abstract

Stack filters are a special case of non-linear filters. They
have a good performance for filtering images with differ-
ent types of noise while preserving edges and details. A
stack filter decomposes an input image into several binary
images according to a set of thresholds. Each binary image
is filtered by a Boolean function. The Boolean function that
characterizes an adaptive stack filter is optimal and is com-
puted from a pair of images consisting of an ideal noiseless
image and its noisy version. In this work the behavior of
adaptive stack filters is evaluated for the classification of
Synthetic Aperture Radar (SAR) images, which are affected
by speckle noise. With this aim it was carried out experi-
ment in which simulated and real images are generated and
then filtered with a stack filter trained with one of them. The
results of their Maximum Likelihood classification are eval-
uated and then are compared with the results of classifying
the images without previous filtering.

1 Introduction

Stack filters are a special case of non-linear filters. They
have a good performance for filtering images with different
types of noise while preserving edges and details. Various
authors have studied this type of filters and many methods
for stack filters design have been developed [4, 5, 9, 11, 15,
16, 17, 20]. These filters decompose the input image by
thresholds yielding a binary image for each threshold value.
Each binary image is then filtered using a Boolean func-
tion evaluated on a sliding window. The resulting image
is obtained summing up all the filtered binary images ob-
tained. This Boolean function must be optimal according to
de Mean Absolute Error (MAE) criterion and must preserve

the so-called stacking property, which will be described in
Section 2. The stack filter design method used in this work
is based on an algorithm proposed by Yooet al. [21]. In
this paper we study the application of this type of filter to
Synthetic Aperture Radar (SAR)images as a stage previous
to a Maximum Likelihood classification.
SAR images are generated by a coherent illumination sys-
tem and are affected by the coherent interference of the
signal backscatter by the elements on the terrain [8, 14].
This interference causes fluctuations of the detected inten-
sity which varies from pixel to pixel. This effect is called
speckle noise. Speckle noise, unlike noise in optical im-
ages, is neither Gaussian nor additive; it follows other dis-
tributions and is multiplicative. Due to all of this, it is not
possible to treat these images using the classical techniques
appropiate for optical image processing. Many authors have
studied the problem of adapting classical image process-
ing methods to be applied to SAR images using filter-based
techniques [10, 12, 18, 19], with some success.
The multiplicative nature of the speckle noise leads us to
model the SAR imageZ as the product of two indepen-
dent random images: imageX, that represents the backscat-
ter and imageY , that represents the speckle noise. The
backscatter is a physical magnitude that depends on the
geometry and water content of the surface being imaged, as
well as on the angle of incidence, frequency and polariza-
tion of the electromagnetic radiation emitted by the radar.
Different statistical distributions have been proposed in the
literature. In this work we use the Gamma distribution,Γ,
for the speckle, the reciprocal of Gamma distribution,Γ−1,
for the backscatter, which results in theG0 distribution for
the return [6, 7, 13]. These distributions depend on three pa-
rameters:α that is a roughness parameter,γ a scale parame-
ter, andn the equivalent number of looks. In this work, we
classify an image into different regions according to their
homogeneity degree, which will be refered to section 5. Af-
ter filtering, the image data have undergone changes in their



statistical distribution functions. These filtered data have a
statistical distribution with skewness and kurtosis closer to
those of the Gaussian law. Then, we classify the image by
using the maximum likelihood method and consider the nor-
mal distribution with different parameters for each region.
The structure of this paper is as follows: section 2 gives an
introduction to stack filters, section 3 describes the filter de-
sign method used in this work. In section 4 we summarise
theG0 distribution for SAR images. In section 5 we show
the modification undergone by the data after applying the
filter, the results of classifying the filtered data and compare
these results with the results of applying the Lee and the
Frost filter. Finally, in section 6 we present the conclusions.

2 Stack Filters: Definitions and designing

This section is dedicated to a brief synthesis of stack fil-
ter definitions and design. For more details on this subject,
see [1, 2, 3, 9, 11, 20, 21]. In the first place the neces-
sary definitions are presented to explain this type of filters.
The threshold operator is given byTm : {0, 1, . . . ,M} →
{0, 1}

Tm(x) =
{

1 if x ≥ m
0 if x < m

, (1)

Xm = Tm(x). (2)

According to this definition, the value of a non-negative in-
teger numberx ∈ {0, 1, . . . ,M} can be reconstructed mak-
ing the summation of its thresholded values between0 and
M . The formula corresponding to this operation is

x =
M∑

m=1

Xm. (3)

What follows shows an example of the threshold decompo-
sition of an unidimensional signal.

X = [2, 1, 4, 5, 3, 2, 4, 3]
X1 = [1, 1, 1, 1, 1, 1, 1, 1]
X2 = [1, 0, 1, 1, 1, 1, 1, 1]
X3 = [0, 0, 1, 1, 1, 0, 1, 1]
X4 = [0, 0, 1, 1, 0, 0, 1, 0]
X5 = [0, 0, 0, 1, 0, 0, 0, 0]

The threshold operator can be extended to bi-
dimensional signals. LetX= (x0, . . . , xn−1) and
Y = (y0, . . . , yn−1) be binary vectors of lengthn, then let
us define a relation≤ given by

X ≤ Y if and only if ∀i, xi ≤ yi. (4)

This relation is reflexive, anti-symmetric and transitive, gen-
erating therefore a partial ordering on the set of binary vec-
tors of fixed length. A boolean functionf : {0, 1}n →
{0, 1}, wheren is the length of the input vectors, has the
stacking property if and only if

∀X, Y ∈ {0, 1}n
, X ≤ Y ⇒ f (X) ≤ f (Y ) . (5)

We say thatf is a positive boolean function if and only if it
can be written by means of an expression that contains only
non-complemented input variables. That is,

f (x1, x2, . . . , xn) =
K∨

i=1

∧
j∈Pi

xj , (6)

wheren is the number of arguments of the function,K is
the number of terms of the expression and thePi are subsets
of the interval{1, . . . , N} .

∨
and

∧
are Boolean operators

AND and OR. It is possible to proof that this type of func-
tions has the stacking property. If the functionf used to fil-
ter an imageX fulfills the stacking property, then from (4)
and (5) it is deduced that, for two binary imagesXi and
Xj , obtained fromX as the result of the application of the
thresholdsT i andT j respectively, the following implication
is valid

i ≥ j ⇒ Xi ≤ Xj ⇒ f
(
Xi

)
≤ f

(
Xj

)
(7)

A stack filter is defined by the functionSf :
{0, . . . ,M}n → {0, . . . ,M}, corresponding to the Positive
Boolean functionf (x1, x2, . . . , xn) expressed in the given
form by (6). The functionSf can be expressed by means of

Sf (X) =
M∑

m=1

f (Tm (X)) (8)

In Figure 1 it can be observed a scheme of aplication of the
filter to an unidimensional signal.Sf represents the boolean
function which filters each binary thresholded signal and
whose outputs are added together to finally obtain the fil-
tered signal.

3 Adaptive Algorithms for Stack Filters De-
sign

In this work we applied the stack filter generated with the
fast algorithm described in [21]. This algorithm arises as a
result of studies on the methods proposed in [9]and [11].
To construct a stack filter following any of these methods,
a training process that generates a positive boolean func-
tion that preserves the stacking property, represented by
the so-called decision vector, is carried out. In what fol-
lows, the generation and behaviour of the decision vector



Figure 1. Scheme of the stack filter applied to
an unidimensional signal. Sf represents the
boolean function applied to each level.

Figure 2. Scheme of the generation of the
stack filter.

is explained. An image is defined as the set given by:
{(s, v) : s ∈ S ⊆ Z2, v ∈ [0, . . . ,M ],M ∈ Z}, where
s is position andv is the value of a pixel. LetE andR be
two images, whereR is the noisy version ofE. A W (s)
window is a subimage ofR of sizeb = r × r centered at
positions. Let us defineV as a2b dimension vector, and
call it the decision vector. In the training phase of the filter
design, for eachs ∈ S, the data inW (s) are decomposed in
M thresholds obtainingM windowswi(s), i = 1, . . . ,M ,
wherewi(s) is the ith thresholded version ofW (s). Then,
for eachs ∈ S in the imageE , a thresholdei(s) is defined
(notice that hereei(s) has dimension 1). Ifei(s) = 1, then
the position onV given bywi(s), considered as a binary
number, is increased by one, ifei(s)= 0, then the same po-
sition is decremented by 1. Periodically,V is checked to
see wether the stacking property holds. If not, the decision
vectorV is suitably modified. Finally, the decision vector
is transformed into a binary vector that is an implementa-
tion of the positive boolean functionf sought. The training

of this stack filter consists of the alternate application of
two different stages: a stage in which the decision vector
is modified according to the scheme indicated in Figure 2,
and a stage in which the stacking property is checked and
enforced on the decision vector.

4 SAR Images: the Multiplicative Model

In this section we introduce the statistical laws com-
monly used under the multiplicative model for Synthetic
Aperture Radar (SAR) images. The multiplicative model
considers the image returned by the SAR, namedZ, as a
product of two independent random variables, one corre-
sponding to the backscattterX and the other one corre-
sponding to the speckle noiseY, so

Z = XY (9)

where we suppose independence among the random vari-
ables corresponding to each image pixel. We can write for-
mula (9) for each pixel(i, j) of an image of sizeM × N
as:

Zi,j = Xi,jYi,j , 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1. (10)

The format of the SAR image (complex, amplitude or in-
tensity) determines the distribution followed by the speckle
noise random variablesYi,j . These variables are i.i.d and
the equivalent number of looksn is their only statistical pa-
rameter. On the other hand, the type of target each pixel
belongs to (forest, pasture, crops, city) determines de most
appropiate distribution for each of the backscatter random
variablesXi,j . The speckle noise comes from the coherent
addition of individual returns produced by elements present
in each resolution cell. So, for example, in an image cor-
responding to a scene of land covered by vegetation, the
returns from the elements of the plants and the ground are
added taking into account the phase, yielding as a result
a complex number. In an amplitude SAR image, the gray
level of each pixel is the module of the this complex num-
ber. In an intensity SAR image, the gray level of each pixel
is the square of this magnitude. For every pixel, the model
for the speckle noise is theΓ (n, 2n) distribution, wheren
is the equivalent number of looks. Then, within this model
the density function for the speckle noiseY is given by

fY (y) =
nn

Γ(n)
yn−1e−ny, y ≥ 0. (11)

In SAR images the minimun forn is 1. This value corre-
sponds to images generated without making the average of
several looks. Images generated in this manner are noiser
than those generated with more number of looks, but they
have better azimuth resolution and, therefore, potencially



more information. We can suppose that the parametern is
known or that it can be estimated at an initial stage of the
image analysis. Therefore, although in theory it would have
to be an integer number, in practice it is necessary to con-
sider it as a real number for the case in which it is estimated
from the data. The moments of the speckle distribution are
given by:

E[Y r] =
1
nr

Γ(n + r)
Γ(n)

(12)

wherer is the moment order andn ≥ 1 is the number of
looks.
There are several models for the backscatter, that is, dif-
ferent statistical distributions exist for the random variables
Xi,j . From the results presented in [7] it is possible to con-
sider the Generalised Inverse Gaussian distribution as a gen-
eral model for the backscatter. This distribution is very gen-
eral and allows us to describe many different targets, but
from an analitical and numerical point of view the estima-
tion of its parameters is very complex and unstable. This
distribution has various particular cases, one of which: the
Inverse Gamma distribution, is of special interest to this
work. This distribution is proposed as a universal model
for SAR data and it leads to theG0 distribution for the re-
turn. The Inverse Gamma distribution, calledΓ−1, is char-
acterised by the density function given by

fX(x) =
2α

γαΓ (−α)
xα−1 exp

(
− γ

2x

)
, (13)

and its moments are expressed as

E [Xr] =
(γ

2

)r Γ (−α− r)
Γ (−α)

, (14)

whereα < 0 and|α| > r. The distribution corresponding to
the returnZ, is fixed by the distribution of the backscatterX
and the distribution of the speckleY . Given thatZ = XY
and that these random variables are independent,fZ (z) can
be calculated as

fZ (z) =
∫

R+

fZ|Y =y (z) fY (y) dy, (15)

wherefZ|Y =y is the density for the returnZ considering
Y = y constant andfY the density function of the speckle
Y . For the random variable corresponding to the return (in-
tensity format) we have thatZ ∼ G0 (α, γ, n), and the den-
sity function is given by

fZ (z) =
nnΓ (n− α)(

γ
2

)α Γ (−α) Γ (n)
zn−1

(γ

2
+ nz

)α−n

, (16)

with α < 0, γ > 0 andn ≥ 1. Given the independence
between the backscatterX and the speckleY , the moments

of the returnZ are the product of the moments ofX and the
moments ofY (equations (14) and ( 12)) yielding

E [Zr] =
( γ

2n

)r Γ (−α− r)
Γ (−α)

Γ(n + r)
Γ(n)

, (17)

recalling that these moments are finite for−α > r. A sta-
tistical tool for characterizing the signal to noise ratio is the
variation coefficient, defined as the ratio between the stan-
dard deviation and the mean value:CV =σ/µ. The variation
coeficient is given by

CV =
σ

µ
= −

√
α (α + n + 1)

α
, α < − (n + 1) ,

where

σ2 =
γ2

4
α (α + n + 1) , µ =

−αγ

2
.

This distribution was proposed in [7] as a model for ex-
tremely heterogeneous data, but its utility for description of
a great variety of natural and artificial targets was verified,
which resulted in its being proposed as a universal model
for SAR data.

5 Results

This section is dedicated to show the results of applying
a stack filter to simulated and real SAR images. The sim-
ulated images are generated in such a way that their data
have different degrees of homogeneity. We consider differ-
ent values of theα and theγ parameters. Theα parameter
corresponds to image roughness (or heterogenity). It adopts
negative values, varying from−∞ to 0. If α is near0, then
the image data are extremely heterogeneous (for example:
urban areas), and ifα is far from the origin then the data
correspond to a homogeneous region (for example: pasture
areas), the values for forests and crops lay in-between. In
order to evaluate the behaviour of the filters we carried out
a maximun likelihood classification on real and synthetic
images.

5.1 Statistical Analysis

An important task in statistical analysis is the character-
ization of the mean value and the variability of a data set.
To this end, the behaviour of some statistics for filtered and
non-filtered images, is compared. A set of images ofG0

distributed data were generated using the values ofα andγ.
Theα parameter varied between−1.5 and−8.5, and theγ
parameter was adjusted so as to keep the mean value equal
to one.
In order to design the stack filter, an image formed with



(a) α = −1.5 (b) image 3(a) filtered

(c) α = −8.5 (d) image 3(c) filtered

Figure 3. Simulated images and their corre-
sponding filtered images.

the mean values of each region, as described in section 3,
is used. Examples of these images are shown in Figure 3.
This figure shows the results of applying an adaptive stack
filter with a3×3 window to images with differentα values.
Figures 3(a) and 3(c) correspond to the original speckled
images and Figures 3(b) and 3(d) correspond to the filtered
images.
It is observed that the value ofCV for the filtered images
is lower than the value ofCV for the non-filtered images.
This indicates that the effect of filtering is a decrease in the
speckle noise. It is also observed that the value ofCV is
lower when theα parameter is lower. For instance: for
α = −1.5 the values ofCV are55.2 and26.9 for the non-
filtered and filtered images, respectively; forα = −8.5 the
values ofCV are33.5 and11.6 for the non-filtered and fil-
tered images, respectively.
As γ is a scale parameter, the emphasis of this study is put
only on the influence of theα parameter. The distribution of
the data is modified when they are filtered. As a measure of
asymmetry and peackedness we take into account the values
obtained for skewness and kurtosis, respectively. The val-
ues obtained for these statistics indicate that filtered data are
more Gaussian than non-filtered data. This improves the re-
sults obtained by maximum likelihood classification. Note
that for a normal distribution the skewness is zero and the
kurtosis is3.
It can also be seen that for high values ofα (heterogeneous
data) the filtered data are less Gaussian than for lower val-
ues ofα . This can be seen in Table 1, forα = −1.5 and
α = −8.5.

Table 1. Kurtosis and Skewness
Kurtosis Skewness

α non filtered filtered non filtered filtered
-1.5 81.58 1.05 5.79 0.54
-8.5 0.99 0.06 0.90 0.28

5.2 Maximum Likelihood Classification of Real
and Simulated images

For this study, one hundred images, of size128 × 128,
were generated. These images had two regions: one sim-
ulating homogeneous data (for example, pasture) and the
other simulating heterogeneous data (for example, city).
The data in the first region followed aG0 (−8.5, 1, 1) dis-
tribution, and the data in the second region followed a
G0 (−1.5, 1, 1) distribution. As an example, Figure 5(a)
shows these two regions. Figure 5(b) shows the result of
a Maximum Likelihood classification on the image of Fig-
ure 5(a), and Figure 5(c) and Figure 5(d) are the filtered and
classified image, respectively.

From these images, the influence of stack filtering on
Maximum Likelihood classification performance can be
assessed. Table 2 shows the average confusion matrix
where: Ri/Rj means the percentage of pixels that belong
to regionRj but were classified into regionRi. From these
values it can be seen that the classification performance
was better for filtered images than for non- filtered images.

In order to test the proposed methodology on real SAR

Table 2. Average confusion matrix of a simu-
lated images.

Image R1/R1 R2/R1 R2/R2 R1/R2

non-filtered 70.76 29.24 88.49 11.51
filtered 92.87 7.13 94.57 5.43

data, a256 × 256 1-look subimage was extracted. The
adaptive algorithm was applied to aideal image which
consists of three regions with uniform values. Each of these
values is computed as the mean value of the corresponding
region in the original SAR image, see Figure 6(a) and
Figure 6(b). Taking the original SAR image and the
ideal image as inputs of the algorithm, the adaptive filter
was generated. Then, this filter was applied ninety five
times. At each iteration, the output image of the previous
iteration was taken as the input image for the present one.
Figures. 6(c) and 6(d) show the resulting images after1 and
95 applications of the stack filter, respectively. Figure 7
shows the original image classified, and the classified



images corresponding to1, 40 and95 iterations. Figure 8
shows the images filtered by the Frost filter and the Lee
filter, together with the corresponding classified images.

Table 3 shows the confusion matrices for the stack filter-
based methods (1, 40 and 95 iterations), and for the Frost
and the Lee filter-based methods. They are based on the
training regions and the test regions depicted in Figure 4.
These two filters were selected as a means of comparsion of
the perfomance of the proposed methodology.

Data must be read as follows:Ri/Rj means the per-
centage of pixels that belong to regionRj but were clas-
sified into regionRi. From these values it can be seen that
the classification performance was better for filtered images
than for non-filtered images. It can also be seen that classi-
ficaton performance improves as the number of iterations
is increased (see columns corresponding toRi/Ri, i =
1, 2, 3).

Figure 4. Training regions (horizontal lines fill)
and test regions (vertical lines fill).

6 Conclusions

In this work, the effect of adaptive stack filtering of SAR
images over classification accuracy was assessed. Synthetic
and real images were used and the performance of repeat-
edly applying an adaptive stack filter was contrasted with
the performance of Lee and Frost filtering. The preliminary

(a) Original image (b) Image 5(b) classified

(c) Filtered image (d) Image 5(d) classified

Figure 5. Synthetic, filtered and classified im-
ages

(a) (b)

(c) (d)

Figure 6. SAR filtered and classified images:
a) orginal, b) ideal, c) filtered, one iteration, d)
filtered, 95 iterations.



Table 3. Confusion matrix for real data.
Filter R1/R1 R2/R1 R3/R1 R1/R2 R2/R2 R2/R3 R1/R3 R2/R3 R3/R3

Stack 1 it 14,35 36,10 49,55 12,82 64,65 22,53 5,32 3,82 90,86
Stack 40 it 62,81 22,42 14,77 10,40 89,09 0,51 4,65 1,24 94,11
Stack 95 it 63,01 25,03 11,96 6,43 93,20 0,37 4,26 1,70 94,04

FROST 16,55 31,02 52,43 17,71 55,54 26,74 6,36 3,47 90,17
LEE 16,38 30,70 52,93 17,24 52,72 30,04 7,19 3,60 89,21

(a) (b)

(c) (d)

Figure 7. a) classified original, b) classified,
one iteration, c) classified, 40 iterations and
d) classified, 95 iterations.

(a) (b)

(c) (d)

Figure 8. a) Frost filtered image , b) Lee fil-
tered image , c) Frost filtered classified image
, d) Lee filtered classified image.



results obtained show that, for the real image used for this
study, consisting mainly of crop patches, the adaptive stack
filter exhibited a better performance.
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