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Abstract

The identification and classification of motion patterns
in point trajectories has been an important issue in under-
standing and representing dynamic scenes. This paper pro-
poses an unsupervised approach to identify coherent mo-
tion in video. Instead of producing a spatio-temporal seg-
mentation of the raw data, the proposed method analyzes
point trajectories along the video sequence to identify sets
of points that move coherently. This new way of extracting
motion information from videos potentially can be used in
different areas of image processing and computer vision.

1. Introduction

Motion analysis and representation are some of the most
challenging problems in video understanding. In recent
years, many methods have been proposed to segment mov-
ing objects in video sequences through curve evolution, ob-
ject tracking and level sets [6, 14, 3]. An interesting method
for video-object segmentation based on level sets is pre-
sented in [6]. In this method, occlusion is handled by ap-
proaching 2D object tracking as a 3D volume problem, and
the video sequence is divided into motion-objects volumes,
occlusion volumes and disocclusion volumes. Active con-
tours also have been employed to track rigid and nonrigid
objects [3], and in this case the weights of the energy terms
are determined adaptively with a performance metric. A
limitation of the methods based on curve evolution is that
they only do tracking of region boundaries along the video
sequence, and illumination changes, occlusions, or complex
regions easily mislead the tracking process. Besides, recov-
ery from tracking errors is not trivial (except when object
models are known a priori).

On the other hand, moving structures can be segmented
based on the trajectories of their samples (i.e. points), which
reduces to finding a linear manifold [11]. In [13] a factor-
ization method is used to segment a wide range of motions

(i.e. moving structures), such as independent, articulated,
rigid, non-rigid, degenerate, non-degenerate, or any combi-
nation of them. However, this method requires that points
are known in advance in all frames and, therefore, does not
handle occlusion.

In this paper, we propose to segment moving structures
in videos by tracking the trajectories of point markers,
namely particles, linked to those structures. The main ad-
vantage of the proposed approach is that we do not need to
assume a specific type of motion to detect it (although, we
do need to assume that motion changes smoothly between
adjacent frames). Points that are moving coherently along
a common trajectory are clustered, and with these clusters
we identify moving structures in the video sequence. The
trajectories of points are determined using the method pre-
sented by Sand and Teller [8], in which point sampling is
adaptive to the local image contents and trajectories are es-
timated using only information at point level (i.e. it does
require patch-based features [9]). In the proposed method,
video objects are tagged with long-range markers, repre-
sented by particles that follow similar trajectories, and are
clustered together.

Because of its flexibility, our method potentially can han-
dle structures with complex shapes and free-form motion. In
video editing applications, the long-range correspondence
of points and their coherent motion can provide ways of im-
plementing high-level edition tasks. Although unsupervised
clustering of point trajectories has already been presented
in [13], to the best of our knowledge the present work is the
first to approach this problem considering arbitrary particle
lifetimes and occlusions. The method outlined here could
be useful in several applications, such as coding moving ob-
jects in videos, or generating descriptors for the video con-
tents.

This paper is organized as follows. The adaptive creation
of particles, i.e. point sampling, and point tracking are de-
scribed in Section 2. Section 3 discusses how points in co-
herent motion are clustered. Our preliminary experimental
results are presented in Section 4. Finally, Section 5 sum-



marizes the main results of this paper, discusses some lim-
itations of the proposed approach and suggests future work
directions.

2. Estimation of Particle Trajectories

We estimate particle trajectories with the Particle Video
approach proposed by Sand and Teller [8]. In their ap-
proach, video motion is represented by a set of particles
that move along the video sequence. These particles are cre-
ated by interpolating image point samples, which is differ-
ent from the feature patch concept [9], since the latter is
based on the neighborhood of pixels.

The particle density is adaptive and depends on the
image content. Regions with more content in higher fre-
quencies tend to have more particles than the regions with
more content in lower frequencies, so it is easier to model
complex motion patterns. Particles are included in the set
(added) whenever (i.e. in video frames) and wherever (i.e.,
at image points) the maximum particle proximity criterion
is satisfied. After created and inserted in a frame, particles
are tracked in the subsequent frames, until the video points
they represent are occluded or surpass the visible frame
area. In this work, we only use one pass forward over the
entire video. However, more passes can be performed (for-
ward and backward), aiming at best distribution and local-
ization of particles, at the cost of increasing computational
complexity.

The estimation of particles trajectories used in this work
can be divided in four stages: particle addition, particle
propagation, particle pruning and particle location opti-
mization (the third and fourth stages differ from the stages
with similar nomenclature described in [8]). Next, these
four stages are described in more detail.

2.1. Particle Addition

Let I(x, y, t) be a video sequence, defined over spatial
coordinates x and y and the temporal coordinate t. Here,
we represent one frame of the sequence simply by I(x, y).
To determine whether new particles must be added to a
frame I(x, y), we filter it with a stack of Gaussian ker-
nels {σ(j) = 1.9j |0 ≤ j ≤ 5}, producing a set of im-
ages {Ij(x, y)}, where j is the index of the correspondent
Gaussian kernel scale σ(j).

For each pixel (x, y) of I(x, y), we determine the range
of scales σ(j) over which the correspondent filtered inten-
sity values Ij(x, y) are approximately constant. We assume
that a pixel at (x, y) is approximately constant over j scales
if ||Ij(x, y) − I1(x, y)||2 < 10 and j is the scale max-
imum (i.e., ||Ij+1(x, y) − I1(x, y)||2 ≥ 10). Let us de-
fine z(x, y) = j as the index map, and s(x, y) = σ(j)
as the scale map, both information will help in the pro-

cess of adding new particles to a video frame I(x, y). Here
and thereafter, a video frame I(x, y) is defined as a 3-
channel image, where the first channel is the image bright-
ness (whose values are within the interval [0, 255]), the sec-
ond channel is the green minus red color component, and
the third is the green minus blue color component. The color
difference channels are scaled by 0.25 to reduce the impact
of color sampling and compression artifacts [7].

To obtain a smooth particle spatial distribution, the index
map z(x, y) is filtered using a Gaussian kernel with σz = 3
and rounded to integer values, resulting in the filtered in-
dex map ẑ(x, y). Then, the correspondent smooth scale map
ŝ(x, y) = σ(ẑ(x, y)) is obtained.

Adding particles to a frame is an iterative process. A par-
ticle is inserted in a pixel location (x, y) if its distance to the
nearest particle is greater than ŝ(x, y); new particles are in-
serted until no pixel location satisfies this particle minimum
distance condition. In the first frame, the particle addition
process starts with no particles. In subsequent frames, the
process starts with the set of particles that survived (i.e.,
were not occluded or left the visible area) from the last
frame. This point sampling technique is similar to that used
in [8].

2.2. Particle Propagation

In the particle propagation stage, the displacement of
particles from the current to the subsequent frame - in the
forward video sequence - are estimated. To propagate a par-
ticle n from frame t to frame t + 1, we use the flow field
specified by the horizontal component displacement field
ū(x, y, t), and the vertical component displacement field
v̄(x, y, t):

xn(t + 1) = xn(t) + ū(xn(t), yn(t), t),
yn(t + 1) = yn(t) + v̄(xn(t), yn(t), t).

Any optical flow technique can be used to obtain the dis-
placement fields ū and v̄ at the pixel locations. At the par-
ticle locations, the flow values are obtained by bilinear in-
terpolation. In this work, we use the variational optical flow
method proposed by Sand and Teller. Implementation is-
sues can be found in [8] and [7].

2.3. Particle Pruning

Unlike the approach proposed by Sand and Teller, we
only prune particles when they become occluded or leave
the field of view. We define the field of view as being the
set of points that are at least 5 pixels distant from the im-
age borders. So, when a particle leaves this field of view af-
ter the optical flow propagating stage, it is removed from
the current frame. This avoids propagating incorrect opti-
cal flow estimates in regions of higher uncertainty.



To detect when particles become occluded, we use an oc-
clusion labeling strategy employed by the variational opti-
cal flow calculation [8]. In order to determine the regions of
the current frame regions that will become occluded in the
subsequent frame, the flow field divergence and pixel pro-
jection error are combined as detailed next. Let us define
the optical flow divergence as:

rd(x, y, t) =
∂

∂x
ū(x, y, t) +

∂

∂y
v̄(x, y, t).

Since we are only interested in the regions that will
become occluded, the positive divergence values are dis-
carded:

r′d(x, y, t) =
{

rd(x, y, t), rd(x, y, t) < 0
0, otherwise

Let us define the pixel projection error as:

re(x, y, t) =
||I(x, y, t)− I(x + ū(x, y, t), y + v̄(x, y, t), t + 1)||2.

The optical flow divergence is combined with the pixel
projection error as proposed in [8], so we can predict which
particles will become occluded in subsequent frames (i.e.
based on the obtained motion compensation error, and the
information that regions tagged by these particles are mov-
ing in opposite directions, leading to an occlusion in subse-
quent frames):

r(x, y, t) = e
−

(
|r′

d(x,y,t)|
2·σ2

d

+
re(x,y,t)

2·σ2
e

)
.

The nearer to ’0’ is r(x, y, t), the stronger is the likeli-
hood that a location (x, y) will be occluded in frame t+1. In
all our experiments we chose σd = 0.3, σe = 20, and a par-
ticle n in frame t+1 is eliminated if r(xn, yn, t) < 0.5 (i.e.
became occluded).

In this work, if a particle becomes occluded or leave the
visible field, we eliminate the particle and it is no longer
considered in the tracking process, even if the image loca-
tion it represents becomes disoccluded later. In some video
understanding tasks, however, it is important to track mov-
ing objects that are becoming occluded, and usually an ob-
ject model is known a priori. The algorithm can be modi-
fied to handle these situations, keeping track of hidden par-
ticles where they satisfy the object model constraints.

2.4. Particle Location Optimization

In the particle location optimization stage, the position of
each particle n in the current frame t is fine tuned by mini-
mizing the objective function:

E(n, t) =
3∑

m=1

(E[m]
d (n, t)) + αfEf (n, t), (1)

where m denotes the image channels, Ed and Ef are the
data-matching and the flow-matching terms, respectively;
αf provides a tradeoff between the two terms and is set to
0.5.

The data-matching term measures the projection error of
a particle n in frame t for each image channel m, and is de-
fined as:

E
[m]
d (n, t) =

Ψ([I [m](xn(t), yn(t), t)− I [m](xn(t0n), yn(t0n), t0n)]2),
(2)

where t0n is the first frame of the sequence in which the par-
ticle n appears, and Ψ(β2) =

√
β2 + ε2, with ε = 0.001, is

a robust norm [1] in which outliers have less influence than
with the standard L2 norm.

The flow-matching term acts like a positional constrain-
ing term, avoiding particle to be displaced far away from
the position predicted by the optical flow vectors. This term
is defined as:

Ef (n, t) =
Ψ([ū(xn(t− 1), yn(t− 1), t− 1)− un(t)]2

+ [v̄(xn(t− 1), yn(t− 1), t− 1)− vn(t)]2),
(3)

where un(t) = xn(t) − xn(t − 1) and vn(t) = yn(t) −
yn(t− 1).

Let dxn(t) and dyn(t) be the horizontal and the verti-
cal displacements of a particle n, respectively. We are inter-
ested in fine-tuning the location (xn(t), yn(t)) of this parti-
cle in frame t. If we substitute xn(t) by xn(t)+ dxn(t) and
yn(t) by yn(t)+dyn(t) in Equations 2 and 3, and derive the
objective function E in relation to dxn(t) and dyn(t), we
obtain a system of equations that can be solved for dxn(t)
and dyn(t): {

∂E

∂dxn(t)
= 0,

∂E

∂dyn(t)
= 0

}
.

Since E is highly nonlinear, the minimization is not triv-
ial. Thus, we linearize the data [1] to obtain a system of
equations, with two equations for each particle (one for
dxn(t) and another for dyn(t)).

The system of equations can be solved for dxn(t) and
dyn(t) using the fixed-point optimization method proposed
in [8].

After solving the system of equations above, the particle
positions can be updated as follows:

xn(t)← xn(t) + dxn(t),
yn(t)← yn(t) + dyn(t).

The positions of all particles in frame t are now defined.
If necessary, the algorithm adds more particles to this frame
(see Section 2.1), and then the process continues in the sub-
sequent frames up to the end of the video.



3. Identification of Particles in Coherent Mo-
tion

The representation of motion in videos through particle
trajectories should be flexible, allowing to identify uncon-
strained motion of complex structures and to occlusions,
with adaptive granularity. However, extracting high-level
information about the moving structures is not a trivial task
for the reasons described next.

Different particles assigned to the same moving structure
can have different lifetimes. For instance, a pair of particles
in coherent motion (e.g. two particles assigned to the same
moving structure) may never coexist in the same frame
(due the their different lifetimes). Besides, the incidence of
outliers and erroneous motion patterns is unavoidable (be-
cause of noise, artifacts caused by lighting and quantiza-
tion/compression, and the absence of a validation model for
the motion of particles).

Only particles appearing simultaneously in at least two
consecutive frames can have their motion patterns com-
pared directly. However, particles that coexist in frame t,
also tend to coexist with other particles in other frames t

′
.

So, motion patterns can be compared continuously, at any
frame t, by keeping track in each vicinity of how particles
move in relation to each other in frame t, and how these mo-
tion patterns change with respect to other particles that only
exist in different frames t

′
. The idea is similar to the combi-

nation of data partitions in ensemble clustering [4, 10, 12].
According to the ensemble clustering philosophy, given

a data set with N samples, there are different ways of parti-
tioning this data set:

• Applying different clustering algorithms;

• Applying the same clustering algorithms with differ-
ent parameters;

• Applying clustering algorithms to different data rep-
resentations (for instance, using different feature
spaces);

• Applying clustering algorithms to different data parti-
tions (i.e. to subsets of the N samples.)

The last option describes the approach adopted for
grouping particles that are in coherent motion. We ap-
ply a clustering algorithm to each set of particles that
coexist (i.e. have lifetime intersection), and then com-
bine these subset clusterings into larger clusters of parti-
cles.

Most ensemble clustering methods available require the
computation of the pairwise similarity for all objects in the
collection. In our case, the number of particles in a video
can be large, and the computational cost could become un-
acceptable.

An interesting option is to consider the integration of
different data partitions as a cluster correspondence prob-
lem [10], where groups of similar clusters are identified and
combined (forming meta-clusters). Next, we present an al-
gorithm to combine several clusters of particles into meta-
clusters, using a version of the ensemble clustering method
proposed in [10], where the selection of a suitable the num-
ber of meta-clusters is automatic.

Particle clustering inconsistencies are expected, because
in a large set of particles moving stochastically some track-
ing errors usually occur. For this reason, the clustering step
is followed by cluster validation, where particle context,
motion and spatial location are combined to check for pos-
sible inconsistencies. Finally, a spatial filtering step is per-
formed to eliminate outliers and groups of particles that are
not considered significant.

3.1. Ensemble Clustering of Particles

In order to cluster the particles inserted in a video se-
quence, we first identify the subsets of particles that
present similar motion patterns in adjacent frames. Let
P = p1, p2, ..., pN be the complete set of N parti-
cles in the video, and ~gn(t, t + l) denote the displace-
ment vector of particle n, between frame t and frame
t + l:

~gn(t, t + l) =
[

xn(t + l)− xn(t)
yn(t + l)− yn(t) .

]
For each frame t, we compute three clusterings for the

particles occurring in that frame based on the following
features: (1) only the displacement vectors between adja-
cent frames ( ~gn(t, t+1)); (2) only the displacement vectors
with two-frames distances ( ~gn(t, t + 2)); and (3) only the
three-frames distance displacement vectors ( ~gn(t, t + 3)).1

These three clusterings are used in each frame to re-enforce
the tendency of particles with similar displacement vectors
~gn(t, t + 1), ~gn(t, t + 2) and ~gn(t, t + 3) to group (i.e. to
show similar motion patterns). This re-enforcement reduces
the influence of outliers and clustering inconsistencies in the
final particle clusters.

Considering that T is the number of frames, we will have
Q = 3T − 6 clusterings of the set of particles.2 Each clus-
tering {λ(q)|q ∈ {1, ..., Q}} divides the set of particles into
k(q) clusters {χq

i |i ∈ {1, ..., k(q)}}, where χq
i denotes the

ith cluster of the qth clustering, and k(q) denotes the num-
ber of clusters in the qth clustering.

1 In each clustering, only the particle displacement vectors defined in
the frame interval [t, t + l], l = {1, 2, 3}, are considered.

2 Some displacement vectors ~gn(t, t + l) can not be calculated: (a)
~gn(t, t+1), ~gn(t, t+2) and ~gn(t, t+3) when t = T ; (b) ~gn(t, t+2)
and ~gn(t, t+3) when t = T−1; and (c) ~gn(t, t+3) when t = T−2.



λ(1) λ(2) λ(3)

p1 1 1 1
p2 1 2 ?
p3 2 2 2
p4 2 2 2
p5 3 3 ?
p6 3 ? ?

Table 1. Example of label vectors λ(1,..,Q), with
Q = 3, k(1) = 3, k(2) = 3 and k(3) = 2.

The mean-shift approach [2] was used to obtain the data
clusterings λ(q) because of its ability to identify clusters
with arbitrary shapes in the feature space. The bandwidth
of the kernel density estimator of the mean-shift algorithm
was set to 3 · l, for all frames t and l = {1, 2, 3}.

At this stage, we have three clusterings {λ(q)} per frame.
Then, a unique partition is obtained for the full set of par-
ticles by merging the three clusterings per frame into a sin-
gle clustering λ. To perform this task, we use the Meta-
Clustering Algorithm (MCLA) [10].

First, the MCLA approach transforms the Q cluster la-
bel vectors λ(q) into a hypergraph. Recall that a hypergraph
is constituted by nodes and hyperedges, and is a generaliza-
tion of a graph, in the sense that a hyperedge can connect
any set of nodes (while in a regular graph, an edge connects
exactly two nodes). To each clustering λ(q) ∈ Nn contain-
ing k(q) clusters, we assign a binary membership indicator
matrix H(q), with N rows (one for each particle) and k(q)

columns (one for each cluster). In the hypergraph represen-
tation, nodes represent particles and the hyperedges repre-
sent clusters. Table 1 and 2 show for an illustrative hyper-
graph the label vectors of the clusterings λ(q) (see Table 1),
and the corresponding hypergraph (see Table 2). In this ex-
ample, the table rows represent the particles (p{1,...,6}), the
clusterings are represented by the label vectors λ(1,...,3) (see
Table 1), the respective binary membership indicator matri-
ces are H(1,...,3) (see Table 2), and the individual clusters
are represented by the hyperedges h{1,...,8}. Since a parti-
cle can only belong to one cluster in a frame q, the row en-
tries in the binary membership indicator matrix H(q) add to
’1’ when the particle cluster is known (i.e. the particle is de-
fined in the interval of frames [t, t+ l] used to produce clus-
tering λ(q)). Rows corresponding to particles not assigned
to any cluster add to ’0’ (i.e., the corresponding particles do
not exist in the interval of frames [t, t + l] over which the
clustering λ(q) was defined).

The concatenated block matrix H = H(1,...,Q) =
(H(1)...H(Q)) defines the adjacency matrix of a hyper-
graph with N nodes (i.e. particles) and

∑Q
q=1 k(q) hyper-

edges (i.e. particle clusters). Each column vector ha is a

H(1) H(2) H(3)

h1 h2 h3 h4 h5 h6 h7 h8

p1 1 0 0 1 0 0 1 0
p2 1 0 0 0 1 0 0 0
p3 0 1 0 0 1 0 0 1
p4 0 1 0 0 1 0 0 1
p5 0 0 1 0 0 1 0 0
p6 0 0 1 0 0 0 0 0

Table 2. Example of hypergraph with 8 hyper-
edges.

hyperedge of the hypergraph representation H, and it rep-
resents one of the particle clusters of the set of clusters de-
noted by H(i), i = 1, ..., Q. The MCLA method groups
clusters (i.e. hyperedges) by similarity into meta-clusters.
The final meta-clusters are obtained by assigning each par-
ticles inserted in the video to one meta-cluster.

The meta-clusters are obtained by hierarchically cluster-
ing hyperedges. To do that, we compute the symmetrical
similarity matrix w, where w(a, b) = w(b, a), as a similar-
ity measure for any two hyperedges ha and hb of the hy-
pergraph. The similarity between cluster pairs ha and hb is
measured by the binary Jaccard measure:

w(a, b) =
h′a · hb

||ha||22 + ||hb||22 − h′a · hb
(4)

Once the similarity matrix w has been calculated, the hy-
peredges are hierarchically clustered with the single link
method [5]. The ideal number of meta-clusters K is cho-
sen as the number of clusters that is the most stable in hi-
erarchical clustering (i.e. dendrogram process). We observe
how the number of clusters varies while the threshold val-
ues are increased when the dendrogram is built; K is the
number of clusters detected during the longest range of con-
secutive increasing threshold values in the dendrogram for
which the number of clusters does not change. This is illus-
trated in Figure 1, where the range Z in the dendrogram de-
fines the ideal number of meta-clusters K = 3.

Identified the K-meta-clusters, all the hyperedges be-
longing to the same meta-cluster are merged into a single
meta-hyperedge. This is done by averaging all hyperedges
hi belonging to the same meta-cluster. A particle can be as-
sociated to a different cluster in different frames, and the
clusters to which a particle belongs can be associated to dif-
ferent meta-clusters (e.g. in some frames a particle may be
in motion with respect to the background, but the same par-
ticle may be static in other frames). Averaging the hyper-
edges will result in meta-hyperedges that have an entry for
each particle, describing the level of association of that par-
ticle with the corresponding meta-cluster. The stronger the



0

0.2

0.4

0.6

0.8

z

Figure 1. Dendrogram obtained through hier-
archical decomposition using the single link-
age method [5]. The longest range of thresh-
olds values for which the number of clusters
is constant (Z) determines the ideal number
of clusters (K = 3).

association, the nearer to ’1’ the entry is; while the weaker
the association, the nearer to ’0’ it gets.

The final step of the ensemble clustering process is the
assignment of each particle to the meta-cluster with which
it is associated most (i.e. has the highest entry in the asso-
ciation meta-hyperedge vector). At the end of this particle
re-assignment by association with the K meta-clusters, a fi-
nal set of meta-clusters is obtained {Gc|c ≤ K}, and c ≤ K
because some meta-clusters may have no particles associ-
ated with it. Thus, there will be at most K meta-cluster la-
bels in the final particle clustering.

3.2. Particle Meta-Cluster Validation

As mentioned before, errors may occur in particle track-
ing, leading to particles wrongly clustered. To detect these
inconsistent after the ensemble clustering step (see Sec-
tion 3.1), a cluster validation step is performed by analyz-
ing the trajectories in the neighborhood of the clustered par-
ticles.

Let pn(t) = (xn(t), yn(t)) be the nth particle co-
ordinates at the frame t. The context of this parti-
cle is defined by its neighborhood of size F , given by:
(xn(t) + δx, yn(t) + δy), where −F−1

2 ≤ δx, δy ≤ F−1
2

and δx, δy ∈ N. In all our experiments we used a neighbor-
hood size F = 5.

The neighborhood of a particle in coherent motion
should not change (since the whole ensemble is moving co-
herently). The differences occurring in the F -neighborhood
of the particle n, between frame t and frame t − L,
can be calculated based on the following matching er-
rors:

D[f ](n, t, L) =
||I(xn(t) + δ

[f ]
x , yn(t) + δ

[f ]
y , t)−

I(xn(t− L) + δ
[f ]
x , yn(t− L) + δ

[f ]
y , t− L)||2,

where f = {1, ..., F 2} are indices to locations in the parti-
cle F -neighborhood. To estimate context changes, we com-
pute the average of the k-best matches (i.e., the average
of the k smallest D[f ](n, t, L) values in f = {1, ..., F 2}),
and if this average value is large enough (i.e. larger than a
threshold Tbestk

, e.g. Tbestk
= 100), we assume that the

particle n changed its context at frame t, and now it can be
marked as inconsistent. In our experiments, we found that
k = 15 and L = 3 offers a good compromise between false
positives and false negatives.

We use k-best neighborhood matches to reduce the in-
fluence of particles near to the boundaries of regions with
coherent motion, since their context is affected by the other
motions in adjacent regions. A small k value (in comparison
with F 2) is chosen to allow slow transitions between adja-
cent regions (i.e. motion context changes), without identi-
fying a change in context.

Let Ωn = {ω1
n, ω2

n, ..., ωZn
n } be the sorted set

of frame indices, indicating where possible context
changes occurred for particle n. The lifetime of par-
ticle n is then sub-divided according to the intervals
{[1, ω1

n), [ω1
n, ω2

n), ..., [ωZn−1
n , ωZn

n ), [ωZn
n , T ]}. To deter-

mine if a context change actually occurred (and the particle
trajectory estimate is incorrect), we keep track of mo-
tion and spatial location of the particle, comparing it with
the cluster prototypes of these intervals. Then, the similar-
ity between the motion pattern of particle n with respect to
each cluster Gc is measured by:

S(n, c, t) = e
−(

dm(n,c,t)
2·σ2

m
+

ds(n,c,t)
2·σ2

s
)

(5)

where dm(n, c, t) and ds(n, c, t) denote the motion and
space differences, respectively, between the particle n and
the prototype of cluster Gc in frame t. The standard devia-
tions σm and σs are set to ’1’. The motion difference is de-
fined as:

dm(n, c, t) =
√

(un(t)− u[c](t))2 + (vn(t)− v[c](t))2

where un(t) = xn(t) − xn(t − 1) and vn(t) = yn(t) −
yn(t − 1). u[c](t) and v[c](t) are respectively the horizon-
tal and vertical components of the cluster Gc representative
motion vector between the frames t and t − 1. This repre-
sentative motion vector is calculated as follows:

1. Calculate the set of motion vectors {[un(t), vn(t)]|pn ⊂
Gc};

2. Compute the reduced ordering of the respec-
tive motion vectors, in relation to the base vector:
[min(un(t)), min(vn(t))];

3. The vector corresponding to the median value in the re-
duced ordering is assigned to [u[c](t), v[c](t)].



The space difference measure is defined by:

ds(n, c, t) =
1
k ·

∑k
j=1

√
(xn(t)− x

[c]
n,j(t))2 + (yn(t)− y

[c]
n,j(t))2

where {(x[c]
n,j(t), y

[c]
n,j(t))|j = 1, ..., k} are the spatial coor-

dinates of the k-nearest particles belonging to cluster Gc in
relation to particle n in frame t.

To determine to which cluster a particle n is most likely
to belong within an interval [ω1

n, ω2
n), we assign the particle

to the cluster that maximizes the similarity measure below
(see Eq. 5) in the interval:

cmax = max
c

ω2
n−1∑

t=ω1
n

S(n, c, t) (6)

In order to have a consistent representation for particles
and particle clustering, we define that a particle can belong
only to one cluster in its entire lifetime. Thus, when a parti-
cle is assigned to more than one cluster by the labeling cri-
terion in Eq. 6, this particle is split into as many particles as
are the cluster labels it was assigned to.

Note that a possible context change detection not
necessarily implies a cluster change after the clus-
ter re-assignment. A particle re-classification only occurs
when the context modification is associated with spa-
tial/motion incoherence.

3.3. Spatial Filtering

The last stage of our particle classification process is the
spatial particle filtering. The goal of spatial filtering is to
eliminate outliers and groups of adjacent particles that are
not significant (artifacts).

To represent spatial adjacency of particles, we compute
the Delaunay triangulation DT (t) for all particles locations
(xn(t), yn(t)) on frame t. Two particles are considered ad-
jacent if they share an edge of DT (t). The membership
of adjacent particles are represented by assigning binary
weights to the edges of DT (t), i.e. an edge receives ’1’
if it connects two particles belonging to the same cluster;
or it receives ’0’ if the particles belong to distinct clusters.
We examine all the connected components of DT (t) 3 and
re-assign to other clusters all the particles belonging to clus-
ters that contain less than 20 nodes. These particles are as-
signed to the cluster that share more ’0’ weight edges with
the cluster that had its particles re-assigned.

3 Two particles are in the same connected component if and only if there
is some path between them composed only by edges of weight ’1’.

4. Experiments and Results

This section presents some experimental results obtained
with the proposed method. The algorithm described in this
paper was applied to a sequence of 50 frames of the coast-
guard sequence, and Figure 2 illustrates the obtained re-
sults for three frames of the sequence. The particle sampling
and tracking process resulted in 30612 particles over the
50 frame sequence, with an average particle lifetime of ap-
proximately 24 frames. The first column in Figure 2 shows
the frames 5, 30 and 45 of the sequence. The second col-
umn shows the three initial particle clusterings (as obtained
by mean-shift), where the colors of particles indicate the
cluster labels for that frame. The third column depicts the
results obtained after meta-clustering, with K = 3 meta-
clusters (the correspondent meta-clustering dendrogram ap-
pears in Figure 1). The fourth column shows the final re-
sults obtained for the frames 5, 30 and 45 of the sequence
(after cluster validation and spatial filtering).

5. Conclusions

A method for unsupervised identification of coherent
motion in video sequences has been proposed in this pa-
per. This technique provides a new way of linking raw video
data to high-level (abstract) concepts, as required in many
image processing and computer vision tasks. Some of its ad-
vantages and limitations are discussed next.

Since the first clustering stage groups particles with sim-
ilar displacement vectors, it constrains the coherent motion
identification to rigid-body translational motion only. How-
ever, this is a soft constraint, since the second clustering
stage (ensemble clustering) identifies the tendency along the
entire video and re-groups the particles. Thus, the proposed
method can identify any type of coherent motion, as long
as the motion is approximately rigid-body translational be-
tween adjacent video frames.

Although in the present work we used a hard cluster-
ing method to obtain the individual particle clusterings (i.e.
mean-shift), it is also possible to use soft clustering in the
same framework. This can be particularly useful in appli-
cations where models of object motions are available, and
probabilistic clustering can be used. In this case, the Jaccard
measure (see Equation 4) could be used with non-binary
vectors, with each element representing the probability that
the respective particle belongs to a cluster, or could be re-
placed with some other vector similarity measure.

The clustering approach used in this work has a signifi-
cant disadvantage: it requires the definition of a fixed band-
width for mean-shift clustering (see Section 3.1). The ideal
bandwidth value depends on the type of motion to be de-
tected in the video sequence, and different motion types
may occur in the same video sequence.



(a) (b) (c) (d)

Figure 2. Coastguard sequence: (a) original frames, (b) mean-shift clustering, (c) meta-clusters, (d)
final results. First row: frame 5; Second row: frame 30; Third row: frame 45.

As future work, we plan to further develop our approach
by investigating how to model moving structures, and how
to represent object occlusions in video scenes.
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