Geodesic Bézier Curves: a Tool for Modeling on Triangulations

Dimas Martinez Morera

Paulo Cezar Carvalho

Luiz Velho

Instituto Nacional de Matematica Pura e Aplicada - IMPA
Estrada Dona Castorina, 110, Jardim Botanico, Rio de Janeiro, RJ. 22460-320

Figure 1. Modeling on the surface of a cow. From left: the control polygons of some curves and a C*
spline, the corresponding curves, a region is filled and other is trimmed, final resulit.

Abstract

We define a new class of curves, called geodesic Bézier
curves, that are suitable for modeling on manifold triangu-
lations. As a natural generalization of Bézier curves, the
new curves are as smooth as possible. We discuss the con-
struction of C° and C* piecewise Bézier splines. We also
describe how to perform editing operations, such as trim-
ming, using these curves. Special care is taken to achieve
interactive rates for modeling tasks.

Keywords: Geodesic Bézier Curve, Discrete Geodesic, de
Casteljau Algorithm, Spline Curves, Free-Form Design.

1. Introduction

Designing free-form curves is a basic operation in Geo-
metric Modeling. Doing so in Euclidean space is a widely
studied problem; see [5, 8] and many others. The problem
becomes harder, however, if we wish to design on a curved
geometry, such as triangulated surfaces. Most existing work
for the later task, relies on imposing a suitable parameteri-
zation, which is usually an unintuitive approach that leads
to a series of “trial and error” operations. We pursue instead
a direct design in the geometry of the surface, an approach
that has received much less attention.

In this paper we introduce a new class of curves that are
suitable for free-form modeling directly on the geometry of
a manifold mesh. Defined by means of the de Casteljau Al-
gorithm, they are a natural generalization of Bézier curves.

Thus, we call them “Geodesic Bézier Curves”.
1.1. Overview

We begin in section 2 with a summary of related work.
In section 3 we give a brief overview of the state of the
art of Discrete Geodesic computation and present a simple
description of the algorithm given by [18], which will be
used in sections 4 and 5. After summarizing classical Bézier
curves theory, we define in section 4 the new class of curves
and compare them to the classical ones. A study of their
use in modeling operations is done in section 5. Section 6
describes the construction of piecewise Bézier spline curves
on triangulations. Finally in section 7 we give concluding
remarks and indicate potential further research.

1.2. Notation and Preliminary Definitions

A polygonal line I' on a triangle mesh S is defined as a
sequence of nodes {I'g,T'1,...,I',} C S such that every
line segment I';I";; is also contained in S. We refer to
polygonal vertices as nodes, in order to differentiate them
from mesh vertices.

Curves defined over a triangulation S cannot be smooth,
the only exception being when they are completely defined
on a planar part of S, which is usually not the case. How-
ever, as continuity is a local property we can analyze the
geodesic behavior of a curve C on S by looking at the inter-
section of the neighborhoods of each curve point with S.




We define C* continuity at points having a neighborhood
isometric to a plane as the usual C* continuity in the unfold-
ing of that neighborhood. In particular, this applies to points
lying in the interior of mesh edges and faces.

In the case of mesh vertices, continuity is not well de-
fined. However, geodesic Bézier curves in practice are well
behaved when they pass through mesh vertices. Further-
more, we are currently investigating the theoretical aspects
of curve continuity at mesh vertices.

2. Related Work

The de Casteljau algorithm has been adapted to Rieman-
nian manifolds using geodesic interpolation [21]. How-
ever, it has been applied only to some surfaces where
geodesic computation is relatively easy, such as spheres or
Lie groups; see [6, 24] and the references therein for details.
The only modeling operation studied in those works is the
construction of cubic splines. Furthermore, trimming seems
to be very hard to perform in this setting. We define curves
using the same idea as in [21], but we consider manifolds
triangulations.

Another generalization of cubic splines to smooth man-
ifolds is given in [9, 23]. The curves are defined by inter-
polating a set of knot points on the surface, minimizing an
energy functional. These results are also applicable to trian-
gulations, but they require the computation of local smooth
approximations. If the position of a knot is changed, the
whole curve must be recomputed since there is no local
control of its shape. On the other hand, the interpolation
of tangent vectors or higher derivatives has not been stud-
ied. Using geodesic Bézier curves we can overcome these
difficulties, and it becomes possible to prescribe derivatives
at knot points and to have local control of the segments of
the Bézier spline curve.

Trimming is a very important application in CAGD. This
operation is usually done by means of a parameterization.
One has to figure out which curve in the parameter space
corresponds to the desired curve on the surface, which is
generally a difficult problem. Most of the time these curves
are obtained as the result of CSG operations, or more gen-
eral surface intersections [15, 4]. An approach for subdivi-
sion surfaces is to modify the original (coarse) mesh in or-
der to obtain a trimmed limit surface [2, 16]. Our trimming
operations are done directly on the mesh and no parameter-
ization is needed.

Recent works [28, 27, 26] define a general framework
for curve subdivision schemes. Geodesic Bézier curves fits
into this framework. However, smoothness of limit curves
is only studied — and proved — in the case of smooth man-
ifolds, considering meshes as an approximation of smooth
surfaces, what is not always the case. For example, a po-
tential user may be interested in modeling on a coarse mesh

instead of a refined one. Besides, models with sharp fea-
tures are best approximated with non-smooth surfaces. In
this paper we analyze the smoothness of geodesic Bézier
curves in the context of triangular meshes, and also how to
handle modifications in the position of control points at in-
teractive rates, what is not done in those works. Our results
are also applicable to the other geodesic-based subdivision
schemes fitting into this framework.

3. Geodesic Curves

The problem of computing locally shortest geodesic
paths on discrete geometries, particularly meshes, has been
addressed in many works [1, 3, 10, 13, 20], and it is still sub-
ject of active research [18, 25]. Most algorithms use the so-
called Continuous Dijkstra Technique. The algorithm pro-
posed in [18] adopts an iterative curve correction strategy
that we believe is suitable to our curve design algorithm,
with the goal of reaching responsive user interaction with-
out increasing storage space. We will go back to this subject
in section 4.

3.1. Iterative Curve Correction Algorithm

In this section we summarize the Iterative Curve Correc-
tion Algorithm; for details see [18]. Geodesic computation
is performed in two steps. In the first step, an initial polyg-
onal curve, joining two points in the mesh, is computed us-
ing a front propagation strategy. In the second step, all the
nodes of the initial curve are put in a priority queue; then the
node with largest error is corrected and the error at neigh-
boring nodes is updated. This process is repeated until a
small error is attained.

Nodes are constrained to lie on mesh edges since a
geodesic must coincide with a line segment in the interior of
each face, and the extremes of the curve are added as new
vertices to the mesh. Errors at curve nodes are computed
based on discrete geodesic curvature [22]. A node position
is corrected by unfolding a subset of the faces adjacent to
it and moving it to the line joining its neighboring nodes in
the unfolded part of the mesh.

Since our curves are allowed to pass through the interior
of a face — not necessarily as a line segment — we would
need to add new vertices to the mesh any time we subdi-
vide a control polygon. However, a careful implementation
would allow geodesic nodes to lie in the interior of mesh
faces, leaving the underlying mesh intact.

4. Geodesic Bézier Curves

Bézier curves are of great importance when modeling on
R™. A natural question is how to generalize them to curved



geometries. In this section we propose a class of curves that
generalize Bézier curves to manifold triangulations.

4.1. Classical Bézier Curves

Given n+1 control points Py, Py, ..., P, in R4, they de-
fine a curve given by the following parametric expression:

P(u) = Z (n) (1—w)"""'P, 0<u<l, (1)

‘ (3
=0

P is known as Bézier curve of degree n, and the set of con-
trol points Py, P, ..., P, forms its control polygon. Note
that P interpolates the two extreme control points Py and
P,, being tangent to the control polygon at these points.
It also “imitates” the form of the control polygon, mak-
ing the task of designing with Bézier curves very intu-
itive. That’s the reason why Bézier curves are so popular
for CAD/CAGD applications. More information about this
subject can be found in [5, 8]; figure 2 shows an example of
a Bézier curve of degree 3.

The de Casteljau Algorithm [7] provides a geometric
procedure to evaluate a Bézier curve at any parameter u €
[0, 1], using repeated linear interpolation:

Algorithm 1 : de Casteljau

Input: The control points Fy, Py, ..
parameter u € [0, 1]
Output: The point P(u).
stepl.fori=0,...,n set Pi[o] (u) = P;
step2.forj=1,...,n
fori=7,...,n
Pi[j ] :interpolate(Pi[i Il] (u), Pi[j -1 (u),w)
step 3. P(u) = P

.,P,and a

Figure 2. A subdivision step of a control poly-
gon and its Bézier curve.

In step 2 we use the function interpolate( A, B, u), which
performs a linear interpolation between A and B with pa-
rameter u: interpolate(A, B,u) = (1 — u)A + uB.

From de Casteljau’s algorithm one can define a subdivi-
sion scheme whose limit curve is the Bézier curve given by
the control polygon. Given a parameter value v and a con-

trol polygon, we can obtain two new control polygons for
the segments P ([0, u]) and P([u, 1]):

Algorithm 2 : Subdivision of a control polygon

Input: The control points Py, P, . .
parameter u € [0, 1]
Output: Two sets of control points defining P([0, u])
and P([u, 1]).
step 1. deCasteljau((FPp, Py, . . .

step 2.
P([0,u]) =bezier(P P pl)
P([u, 1)) =bezier(P\", Pi"~Y ... Pl

., P, and a

)Pn)au)‘

Evaluating the curve at u, using de Casteljau’s algorithm,
provides the intermediary interpolated points Pi[j ). The out-
put (step 2) are the control polygons defining both (Bézier)
segments of the curve. Figure 2 shows a subdivision step of
the control polygon of a degree 3 Bézier curve.

Algorithm 2 provides the rule for the subdivision scheme
converging to the curve. Additionally, this scheme can be
made adaptive by stopping the subdivision whenever a con-
trol polygon can be considered as “almost straight”.

4.2. Bézier Curves on Triangulations

Geodesic Bézier curves are defined by means of the sub-
division algorithm for classical Bézier curves. Given a con-
trol polygon Py, Pi,..., P, on a surface S, we want to
compute a curve C on § interpolating Py and P,,, whose
shape is controlled by the position of the interior points
PPy ..., Py

The curve C is defined as the limit of the subdivision
scheme given in algorithm 2 of section 4.1. The main dif-
ference is that the sides of the control polygon are no longer
line segments, but geodesics connecting the control points.
This imposes the necessity of modifying the interpolation

Algorithm 3 : Interpolation on Triangulations

Input: A manifold triangulation S, two points ) and
Q2 on it and a parameter u € [0, 1]
Qutput: A point @ on S interpolating @1 and Q5.
step 1. v =ComputeGeodesic(Q1, Q2).
step 2. () = the point of «y such that

d’y(Qh Q) = Udv(le Q2)




step on algorithm 1. The equivalent to linear interpolation
in the geometry of the surface is the interpolation along
geodesic lines. Algorithm 3 describes the interpolation step
in the case of manifold triangulations. In this algorithm,
d, (A, B) computes the distance between A and B along .
Note that since v is a polygonal line, it is very simple to
perform step 2.

To compute an approximation of C, we can use the subdi-
vision adaptive algorithm. It stops at some prescribed level
of subdivision or when the control polygon can be consid-
ered as a geodesic segment; i.e., when all of its control ver-
tices have error smaller than a prescribed tolerance. Figure
3 shows some geodesic Bézier curves along with their con-
trol polygons.

Figure 3. Some geodesic Bézier curves. Con-
trol polygons are also shown in the Cube
model.

The use of de Casteljau’s algorithm in the definition of
geodesic Bézier curves makes them a generalization of pla-
nar Bézier curves. Note that a geodesic on a plane is a
straight line. Therefore, when the triangulation is planar
both concepts coincide; see for example the curves designed
on the (planar) faces of the cube in figure 3. As in the case of
classical Bézier curves, we have a parameterization of our
curves with parameter u € [0, 1]. Evaluation at any particu-
lar parameter value can be performed easily by subdividing
the corresponding control polygon at each level of subdivi-
sion. Previous calculations can be used to evaluate at new
parameter values, this can be useful when performing many
evaluations.

It is known that shortest geodesics are not unique on tri-
angulations. Consequently, the use of a different subdivi-
sion parameter may lead to a different curve. So geodesic
Bézier curves depends on the control points and the cho-
sen subdivision parameter u. To our experience, the curves
obtained with different values of u are very close to each
other. We are currently studying the theoretical issues re-
lated to the choice of u. In practice, selecting a fixed value
of u gives us a subdivision curve. In this paper we have cho-
sen u = 0.5 and therefore we have a midpoint subdivision
scheme. All figures of this paper were generated using this

scheme.

Geodesic algorithm selection

There are several algorithms to compute geodesics (see
section 3) and any of them could be used both to compute
geodesic Bézier curves and to perform user interaction. We
chose the algorithm of [18] for two reasons. In first place,
it relies on the correction of an initial curve assumed to be
close to the true geodesic. Since de Casteljau’s algorithm is
a sort of corner-cutting process, a part of each control poly-
gon can be used as initial curve to compute the geodesics
needed in the computation of control polygons in the fol-
lowing level of subdivision. On the other hand, during in-
teraction the new control polygons are very close to the pre-
vious ones and they can be computed very fast. Using other
algorithms as [25] also permits very fast interaction, but at
the cost of storing a tree for each control point. The tree
associated with a control point must be updated any time its
position is changed.

4.3. Properties of Geodesic Bézier Curves

Geodesic Bézier curves share some properties with clas-
sical ones. The proofs of the following propositions can be
found in [17].

Proposition 1 Geodesic Bézier curves interpolate Py and
P, and are tangent to the control polygon at these points.

Each interior point of an edge has a neighborhood which
is isometric to an open disc in the plane. By means of
this isometry, we can analyze the behavior of a curve when
passing through the interior of mesh edges. If the curve is
smooth in the plane, it will have smooth appearance in the
mesh. The following proposition address this property of
geodesic Bézier curves.

Proposition 2 A geodesic Bézier curve has (at least) C!
continuity when intersecting an edge of the mesh.

Proposition 3 Each connected component of the intersec-
tion of a geodesic Bézier curve with the interior of a mesh
face is a C* plane curve, except for (at most) a countable
set of points, where it is Ccl.

As a consequence of previous propositions we have that
C is as smooth as possible in the interior of faces and when
crossing a mesh edge. The analysis of the passage of C
through mesh vertices is more complicated and is part of
our current research.

The Convex Hull property of Bézier curves has a huge
importance in modeling. The adaptive version of de Castel-
jau’s algorithm relies on this property. It is not trivial to
give a proper definition of convex set in a curved geometry.
However, we can find in [17] definitions of convex set and
convex hull that are appropriated for the study of our curves.



The following propositions guarantee the correctness of the
adaptive version of geodesic Bézier curves.

Proposition 4 Geodesic Bézier curves satisfy the convex
hull property. This is, a geodesic Bézier curves is contained
in the convex hull of its control polygon.

Proposition 5 Given a simple polygonal curve T, joining
two different points A and B on S, the area of its convex
hull A(T) is equal to zero if and only if T is a simple shortest
geodesic.

5. Modeling

In order to model with geodesic Bézier curves we must
be able to perform the usual modeling operations. More-
over, the user should be allowed to modify a curve at in-
teractive rates. In this section we first describe how to effi-
ciently handle user interaction. Following that, we present
a simple algorithm for region fill and trimming.

5.1. User Interaction

Fast user interaction is very important in free-form de-
sign operations. The user should be able to modify any pre-
viously defined curve by changing the position of some of
its control points. This operation should be as fast and easy
as possible; for example, it must be possible to select and
drag any control point using the mouse. Every time the po-
sition of a control point is changed, its neighboring sides in
the control polygon should be recomputed. These (at most
two) sides are geodesic lines and we must recompute them
very fast, at least approximately. Each new (recomputed)
geodesic is very close to the old (original) one, since one
of their extremes remain fixed while the other one is very
close to the corresponding extreme in the old curve. Hence
we use, as initial approximation for the algorithm described
in section 3, the original curve after adding to it the line seg-
ment joining its extreme to the new control point position.
Because the initial segment is very close to the recomputed
one, this update process runs very fast. Additionally, we
force the geodesic computation to perform fewer iteration
steps during interaction since the user only needs to have a
good idea of the shape of the control polygon. When the
user releases the mouse, full-precision geodesics are com-
puted and the curve is then recomputed. Figure 4 shows
three different positions for the middle node during user in-
teraction with a third order curve.

5.2. Region Fill and Trimming

We are now concerned with the problem of identifying a
piece of a surface S limited by one or more curves defined

on it. Solving this problem allows us to trim (cut) a piece
of S, to paint it with a certain color, or to map a texture
to it. Given a point P in S, typically obtained by a mouse
click, the idea is to use a flood-fill algorithm, propagating
a wavefront from this point until it reaches the boundary
curves. Algorithm 4 describes how to identify the faces in
the region R that contains the point P.

Algorithm 4 : Identify region

Input: A point P € S
Output: The set Sg = {f € {faces of S},s.t.f (R # 0}
step 1. f = face containing P.
step 2. push(f,Lr)
step 3. while L is not empty
g =pop(Lr)
puSh(g7SR)
for h €{neighbors of ¢}
if(can_propagate(g — h))
push(h,LR)

In algorithm 4 above, Ly is an auxiliary list of faces. The
function can_propagate returns true if the following three
conditions hold:

1. h does not belong to L,
2. h does not belong to Sg, and
3. 'R contains the edge common to g and h, or part of it.

In practice it is not necessary to know if condition 3 holds.
Instead we only consider the faces that are adjacent to edges
intersecting region R, see figure 6. When L becomes
empty we have in S all the faces contained in the interior
of R and also the faces cutting the boundary curves. They
are colored red and green respectively in figure 5 (left).
Once we have identified the set S of faces cutting R, we

Figure 6. Propagation directions. Arrows in-
dicate by what edges can the wave be prop-
agated. Bullets indicate what portion of the
edges belong to R (shadowed region).

must decide which part of the boundary faces belongs to k.
To do that, during propagation we mark each portion of an



¢ ¢

¢ ¢

Figure 4. Ilgea model: Four different positions for the middle control point in a curve with three
control points.

Figure 5. Region finding stages. Left: set Sz with boundary faces highlighted. Middle and Right: the
region R after eliminating the part of boundary faces not belonging to it.

edge intersecting R, see figure 6. With this information we
can decide which part of the planar subdivision defined by
the boundary curves in each face belongs to k.

The above described process can easily be performed if
the seed point P belongs to a face which is entirely con-
tained in R. If P belongs to a face crossed by the boundary
of R, we subdivide it until P is inside an interior face (see
figure 7). For texture mapping or trimming it is not suffi-

Figure 7. Locating seed point

cient to identify the part of S (i.e., the region R) selected by
the user. It is also necessary to have a model of it. In those
cases we can triangulate the corresponding part of each face
crossed by the boundary of R. Figure 8 shows some regions
filled or trimmed in the Cube and the Bunny models.

6. Piecewise Bézier Spline Curves

A powerful tool for modeling is the use of piecewise
spline curves, allowing local control of the shape of the
curve as well as faster computations by means of segments
of low degree. We want to compute piecewise spline curves
of geodesic Bézier curves , so next we investigate how to
guarantee some continuity at junction points.

As usual, C° continuity is reached by defining the first
control point of a segment C,11 to be the same as the last
control point of its previous segment C;. To guarantee C'*
continuity is harder because we must have the last side of
the control polygon of C; aligned with the first side of the
control polygon of C;11. Moreover, the length of these two
sides must be the same. This means that we need to lo-
cate three control points in the same geodesic line. In other
words, the position of the two first control vertices of the
segment C; 1 are determined by the position of the control
vertices of the previous segment C;.

Given the control polygon of the i*" segment C; of a
spline curve C, how to compute the two first control points
Pyt and Pjtt of Ciy1? Tts first control point Py is
the same as the last control point P!, of C;. The second
one, Pf“, is hard to find because we do not know how



Figure 8. Filled and trimmed regions. Up:
Trimmed Cube. Down: Stanford’s bunny with
two trimmed regions and a filled one.

to continue the geodesic line between P?, , and P! . For
smooth surfaces we can compute the unique geodesic pass-
ing by a point in a direction. This is not the case for shortest
geodesics on meshes. Nevertheless the straightest geodesics
defined by [22] have this nice property. For that reason we
define the first side of the control polygon of C; ;1 as the
straightest geodesic continuing the last side of the control
polygon of C;. It is known [22] that if a straightest geodesic
does not pass by a spherical vertex, it is also a shortest
geodesic. So we can expect that most of the times our con-
trol polygon will be defined by means of shortest geodesics.
It is important to note that all the properties of section 4.3
are also satisfied if we replace one or more of the shortest
geodesics by straightest ones. Thus, the relaxation we did
to the definition of the control polygon, in order to have C'*
continuity, is more than justified.

Finally note that modifying the position of P! _; mod-
ifies the position of P;™! and vice versa. In the last case,

Figure 9. C° and C' splines on the surface of
the bunny.

the last side of the control polygon of C; will be a straight-
est geodesic. Modifying the position of the junction point
conduce us to modify at least the position of one of the
control points P! _; and Pf“. Figure 9 show the use of
C! splines to write in the surface of the Stanford’s bunny
model. The middle curve in figure 1 is a C'* spline, com-
posed by 8 Bézier segments.

7. Conclusion

We have defined geodesic Bézier curves, which are a
generalization of Euclidean Bézier curves to manifold trian-
gulations, and studied some properties of them. They have
the advantage of being defined geodesically, which makes
them independent of any parameterization. We have shown
how to use them to define pieces or regions of a surface,
allowing trimming, local texture mapping, and region col-
oring. Fast user interaction joined with the possibility of
constructing C° and C' splines make of them a powerful
tool for free-form modeling on manifold triangulations.

7.1. Further Research

There remain some theoretical issues associated with
geodesic Bézier curves; it will be very interesting to see
which other properties of classical Bézier curves hold for
the new curves and also which concepts can be generalized
to the geometry of manifold triangulations. For example, it
is not clear how to define the control polygons if we want
C? continuity or higher. The continuity of the curves at
mesh vertices has to be studied. Is there something equiv-
alent to affine invariance of Bézier curves in the case of
geodesic Bézier curves?



There are some works about geodesic computation in ge-
ometries other than manifold triangulations. So, we can de-
fine geodesic Bézier curves for point clouds [19], for Rie-
mannian manifolds [14], and for smooth surfaces [12, 11].
The next step is to study how to handle user interaction in a
fast way and what properties of classical Bézier curves are
inherited by geodesic Bézier curves on those geometries. A
good point to start could be subdivision surfaces where the
extension of the ideas in this paper seems to be straightfor-
ward, with the nice property that user interaction could be
handled at low resolution, making it faster.

8. Acknowledgements

This research has been developed in the VISGRAF
Laboratory at IMPA. VISGRAF Laboratory is sponsored
by CNPq, FAPERJ, FINEP and IBM Brazil. We would
like to thank Uri Usher and Luiz Henrique de Figueiredo
for their valuable sugestions after reading the original
manuscript. Most of the 3D models used were taken
from the Stanford 3D Scanning Repository (http://www-
graphics.stanford.edu/data/3Dscanrep/) and the Cyberware
Sample Models (http://www.cyberware.com/).

References

[1] A. D. Aleksandrov and V. A. Zalgaller. Intrinsic Geome-
try of Surfaces, volume 15 of Translation of Mathematical
Monographs. AMS, 1967.

[2] H. Biermann, I. M. Martin, D. Zorin, and F. Bernar-
dini. Sharp features on multiresolution subdivision surfaces.
Graph. Models, 64(2):61-77, 2002.

[3] J. Chen and Y. Han. Shortest paths on a polyhedron. In Pro-
ceedings of 6th Annu. ACM Sympos. Comput. Geom, pages
360-369, 1990.

[4] L. C. G. Coelho, M. Gattass, and L. H. de Figueiredo. Inter-

secting and trimming parametric meshes on finite-element

shells. International Journal for Numerical Methods in En-

gineering, 47(4):777-800, 2000.

E. Cohen, R. F. Riesenfeld, and G. Elber. Geometric Mod-

eling with Splines: An introduction. A K Peters, Ltd., 63

South Avenue, Natick, MA 01760, 2001.

P. Crouch, G. Kun, and F. S. Leite. The de Casteljau algo-

rithm on Lie groups and spheres. Journal of Dynamical and

Control Systems, 5(3):397-429, July 1999.

P. de Casteljau. Outillage Méthodes Calcul. Internes Doku-

ment P2108, SA André Citroén, Paris, Feb. 1959.

G. Farin. Curves and surfaces for CAGD: a practical guide.

Morgan Kaufmann Publishers Inc., San Francisco, 2002.

M. Hofer and H. Pottmann. Energy-minimizing splines in

manifolds. ACM Trans. Graph., 23(3):284-293, 2004.

[10] S. Kapoor. Efficient computation of geodesic shortest paths.

In Proceedings of 31st Annu. ACM Sympos. Theory Com-
put., pages 770-779, 1999.

[5

—

[6

—

[7

—

[8

—_—

[9

—

(11]

(12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

E. Kasap, M. Yapici, and F. T. Akyildiz. A numerical study
for computation of geodesic curves. Applied Mathematics
and Computation, 171(2):1206-1213, 2005.

R. Kimmel and G. Sapiro. Shortening three-dimensional
curves via two-dimensional flows. Computers and Mathe-
matics with Applications, 29(3):49-62, 1995.

R. Kimmel and J. Sethian. Computing geodesic paths on
manifolds. In Proceedings of the National Academy of Sci-
ences of the USA, 95(15):8431-8435, July 1998.

E. Klassen, A. Srivastava, W. Mio, and S. Joshi. Analy-
sis of planar shapes using geodesic paths on shape mani-
folds. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 26(3):372-384, 2004.

S. Krishnan and D. Manocha. An efficient surface inter-
section algorithm based on lower dimensional formulation.
ACM Trans. on Computer Graphics, 16(1):74-106, 1997.
N. Litke, A. Levin, and P. Schroder. Trimming for sub-
division surfaces. Computer Aided Geometric Design,
18(5):463—-481, June 2001.

D. Martinez. Geodesic-based Modeling on Manifold Trian-
gulations. PhD thesis, IMPA, Rio de Janeiro, Brazil, 2006.
D. Martinez, L. Velho, and P. C. Carvalho. Computing
geodesics on triangular meshes. Computer and Graphics,
29(5):667-675, October 2005.

F. Mémoli and G. Sapiro. Distance functions and geodesics
on submanifolds of R? and point clouds. SIAM Journal on
Applied Mathematics, 65(4):1227-1260, 2005.

J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou.
The discrete geodesic problem. SIAM J. COMPUT., 16:647—
668, 1987.

F. C. Park and B. Ravani. Bezier curves on Riemannian man-
ifolds and Lie groups with kinematic applications. ASME
Journal of Mechanical Design, 117:36-40, 1995.

K. Polthier and M. Schmies. Straightest geodesics on poly-
hedral surfaces. In H.-C. Hege and K. Polthier, editors, Visu-
alization and Mathematics, pages 135-150. Springer Verlag,
Heidelberg, 1998.

H. Pottmann and M. Hofer. A variational aproach to spline
curves on surfaces. Computer Aided Geometric Design,
22(7):693-709, October 2005.

R. C. Rodriguez, F. S. Leite, and J. Jacubiak. A new ge-
ometric algorithm to generate smooth interpolating curves
on riemannian manifolds. LMS Journal of Computation and
Mathematics, 8:251-266, 2005.

V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and
H. Hoppe. Fast exact and approximate geodesics on meshes.
In Proceedings of ACM SIGGRAPH 2005, pages 553-560,
2005.

J. Wallner. Smoothness analysis of subdivision schemes by
proximity. Constr. Approx., 24(3):289-318, 2006.

J. Wallner and N. Dyn. Convergence and C* analysis of
subdivision schemes on manifolds by proximity. Comput.
Aided Geom. Design, 22(7):593-622, 2005.

J. Wallner and H. Pottmann. Intrinsic subdivision with
smooth limits for graphics and animation. ACM Trans.
Graphics, 25(2):356-374, 2006.



