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Abstract

Using inexpensive and readily available materials–a
calibrated pair of cameras and a laser line projector–a 3D
laser range scanner which requires no tracking is imple-
mented in this paper. We introduce a planarity constraint
for reconstruction, based on the fact that all points ob-
served on a laser line in an image are on the same
plane of laser light in 3D. This plane of laser light lin-
early parametrizes the homography between a pair of im-
ages of the same laser line, and this homography can be
recovered from point correspondences derived from epipo-
lar geometry. Points visible from multiple views can be re-
constructed via triangulation and projected onto this
plane, while points visible in only one view can be recov-
ered via ray-plane intersection. The use of the planarity
constraint during reconstruction increases the system’s ac-
curacy, and using the planes for reconstruction increases
the number of points recovered. Additionally, an in-
teractive scanning environment is constructed, where
incremental reconstruction is used to provide continu-
ous visual feedback. Reconstructions with this method are
shown to have higher accuracy than standard triangula-
tion.

1. Introduction

Laser range scanners (such as those offered by Shape-
Grabber [1] and CyberWare [2]) provide an excellent way
to recover shape data. Typically, however, a tradeoff exists
between system cost and scan accuracy. High end commer-
cial systems come with a substantial price tag, and require
constant calibration and maintenance to recover consistent
shape data. Some sort of tracking, such as the “articulated
arm” in the Perceptron ScanWorks package [3] or FAS-
TRACK in the Polhemus FastScan [4] system, is also usu-
ally necessary. Our system, by contrast, was conceived with
low cost and simple scanning in mind. The setup includes a

synchronized stereo pair and hand-held straight line projec-
tor, as well as a display where visual feedback in the form
of incremental 3D reconstruction is provided. Figure 1 il-
lustrates the configuration of the system. The cameras are
fully calibrated with respect to the world coordinate sys-
tem, and the fields of view of the two cameras overlap. The
intersection of these two fields of view is the working vol-
ume where three-dimensional data can be captured. The line
projector generates an arbitrary and unknown plane of light,
which intersects the working volume and generates curves
which should be visible in both images.

Figure 1. The scanning system, with a frog
model in place.

The same physical setup is suggested by Davis and
Chen [11] as a greatly improved laser range scanner. It
maintains many of the desirable traits of other laser range
scanners (accuracy, robustness) while eliminating actuated



components, thereby reducing calibration complexity and
concomitantly increasing maintainability and scan repeata-
bility. Furthermore, the elimination of actuated components
drastically reduces the cost of the device. While standard
triangulation used by Davis and Chen [11] can only recover
points in the working volume, our approach can recover ad-
ditional points visible from only one view. Our extended
working volume is the union of the fields of view as illus-
trated in Figure 2.
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Figure 2. A top view of the working volume
and scannable surfaces of a T-shaped object.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 derives the equations for
the novel reconstruction method. In Section 4, this method
is applied in the implementation of an interactive scanning
system. Section 5 provides error analysis and scanning re-
sults, and Section 6 concludes with a summary and future
work.

2. Related Work

Slit scanners have been continuously improving since
their development early in the history of range scanners.
Section 2.2 of F. Blais’ survey on the subject [7] provides a
good overview of slit scanners’ associated advantages and
disadvantages. Work on this particular system started as an
extension of a real time implementation of the shadow scan-
ner created by Bouget and Perona [8]. This shadow scan-
ner works using two calibrated planes on which the shadow
cast from a stick illuminated by a point light source can
be observed. By estimating the location of the front edge
of the shadow plane in space, a reconstruction of an object
can be obtained using a single camera via ray-plane inter-
section. Notably, in section 5, they suggest extending the
shadow scanner to integrate multiple views; this suggestion

is made, however, with the intention of integrating multiple
scans easily to obtain a full 3D model of an object. Bouget
and Perona also expanded upon their previous work in [10],
using an arbitrary (rather than predictably oriented) set of
shadow planes to eliminate the necessity of a background
plane when doing reconstructions. Merging scans was ad-
dressed in [9], but the simultaneous use of multiple views
and arbitrary shadows is not explored in their literature.

Subsequent research revealed that the same system setup
we planned to test had been used by Davis and Chen [11].
In this paper, reconstructions were done by recovering point
correspondences using epipolar lines, then doing triangula-
tion. This paper provided both confirmation that a stereo
pair with an uncalibrated light source was indeed capa-
ble of accurate reconstruction using triangulation alone, as
well as a good reference concerning important implemen-
tation details such as laser line detection. Another system
involving a plane of laser light was recently constructed
by Zagorchev and Goshtasby [18], in which depth calcu-
lation was done via ray-plane intersection. The reconstruc-
tions were done from single views, however, and integrated
using a reference frame which was also used to recover the
laser plane. A third system, in principle basically the same
as Bouget and Perona’s shadow scanner with an added fast
surface registration technique, was presented by Winkel-
bach et al. in [17].

Also closely related is the work done by Trucco and
Fisher [16], which discusses many constraints on recon-
structed points in a system with two cameras and a plane
of laser light, including a depth constraint on corresponding
points from two images; coplanarity is unmentioned in con-
junction with this constraint. Their system relies on actuated
components–specifically, a sliding table–and uses a “direct
calibration” method to skirt around the use of camera mod-
els and plane parametrization. Direct calibration simply in-
volves using an object of known geometry to calibrate the
entire system, rather than calibrating the cameras and the
plane individually, and therefore retains many of the disad-
vantages (such as constantly required recalibration) of com-
plex laser range scanners.

A final group of papers [14, 6, 15, 5] describe meth-
ods for 3D reconstruction which either assume or take ad-
vantage of planarity in the observed scene. These are typi-
cally planar objects, however, such as tabletops or faces of
buildings; none are planar illumination systems such as a
laser line projector. In a paper by Szeliski et al. [15], a pla-
narity constraint is used for reconstruction by limiting re-
constructed points within detected planes in the image to
be on those planes. Notably, insignificant additions to accu-
racy are reported due to their planarity constraint.



3. Reconstruction

Using the pinhole model for image formation, the equa-
tion of projection of a three-dimensional point p onto image
point u in homogeneous coordinates is

λu = K(Rp + T )

where λ is a non-zero scalar value, K is an upper triangu-
lar 3×3 matrix, R is a 3×3 rotation matrix, and T is three-
dimensional translation vector. K, R, and T are all param-
eters of the camera. For the remainder of the paper it is as-
sumed that all cameras are calibrated. That is, K, R, and T
are known for each camera.

Since K is known, all points in pixel coordinates u can
be converted to normalized image coordinates u′ and

λu′ = λK−1u = Rp + T

To simplify notation, all image measurements will refer to
the normalized coordinates. Hence, for a pair of cameras
and a common point, the image formation equations be-
come: {

λ1 u1 = R1 p + T1

λ2 u2 = R2 p + T2

For more information on image formation and camera cali-
bration the reader is referred to [13].

The unknown plane of light is written as follows

Π = {p : n1p1 + n2p2 + n3p3 + n4 = 0}

where the coefficient vector [n1 n2 n3 n4]t is non-zero.
Since this coefficient vector is determined up to a multi-
plicative scale factor, the family of three-dimensional planes
has three degrees of freedom. An alternative vector notation
is also used in this paper:

Π = {p : ntp− d = 0}

where n = [n1 n2 n3]t is a unit vector and d = −n4 is the
distance from the plane to the origin of the coordinate sys-
tem.

3.1. Planar Curves and Homographies

If an object is placed inside the working volume, the set
of points on the object illuminated by the line projector form
a three-dimensional curve, C (See Figure 3). As a result of
depth discontinuities the curve may be composed of various
disconnected segments. However, the entire curve is planar
and lies in the plane Π. As a result, the two image curves,
c1 and c2, captured by the pair of cameras are related by
a homography, H . This homography is the composition of
the two perspective homographies; one from the first image
plane to the plane of light, H−1

1 , followed by a second one
from the plane of light to the second image plane, H2. Since

this homography is parametrized by the plane of light, the
family of homographies produced by this process has only
3 degrees of freedom instead of the 8 degrees of freedom
of a general unconstrained homography. Further informa-
tion on plane induced homography constraints is available
in Chapter 12.1 of [13].
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Figure 3. Homographies between the laser
plane and image planes.

3.2. Planarity Constraint

Since the stereo pair is calibrated, corresponding points
in the two image curves can be determined using epipo-
lar geometry. By traditional triangulation each pair of cor-
responding image curve points determines a point on the
three-dimensional curve. This is the point which minimizes
the sum of the square distances to the two rays back pro-
jected through the image points. Due to measurement noise,
these estimated points do not satisfy the co-planarity con-
straint. However, the constraint imposed by the reduced
numbers of degrees of freedom in the parametrization of
the homography allows for the estimation of the plane of
light. Subsequently the location of points on the three-
dimensional curve are estimated under the constraint of be-
longing to the estimated plane. This method produces more
accurate results, as demonstrated in Section 5.



3.3. Homography Parametrization

The first step is to derive an expression for the homog-
raphy ξu2 = H u1 which transforms points on the first im-
age plane onto points on the second image plane. Geometri-
cally, this homography is defined by the following steps: 1)
given a first image point u1, compute the intersection point
p of the ray corresponding to the image point u1 with the
plane Π; and 2) compute the image point u2 as the projec-
tion of the point p onto the second image plane.

Algebraically, a point along the ray corresponding to u1

can be written as

p = λ1 v1 + q1 , (1)

in world coordinates, for a direction vector v1 = Rt
1u1,

a center of projection q1 = −Rt
1T1, and some value of

λ1 6= 0. For this point to be on the plane Π the follow-
ing condition must be satisfied as well

0 = ntp− d = λ1 (ntv1) + (ntq1 − d) , (2)

or equivalently

λ1 =
d− ntq1

ntv1
. (3)

Note that the denominator is zero if and only if the ray de-
fined by the first image point u1 is parallel to the plane of
light, which should never be the case here. Replacing the
value of λ1 just computed in the expression (1) for p we ob-
tain

p =
d− ntq1

ntv1
v1 + q1 . (4)

The projection of this point onto the second image is an im-
age point u2 which satisfies the projection equation

λ2v2 = p− q2 =
d− ntq1

ntv1
v1 + q1 − q2 . (5)

for some scalar value λ2 6= 0. Simple algebraic operations
transform this expression into the following equivalent one

ξ v2 =
[
(d− ntq1) I + (q1 − q2) nt

]
v1 (6)

for some scalar value ξ 6= 0 (ξ = λ2 (ntv1) in the pre-
vious expression), and I the 3 × 3 identity matrix. If A
denotes the matrix inside the brackets, then the homogra-
phy ξu2 = H u1 which transforms points on the first im-
age plane onto points on the second image plane is defined
by the 3 × 3 matrix H = R2ARt

1. Now, note that the ma-
trix A can be written as a linear homogeneous combination
of 3× 3 matrices which only depends on the calibration pa-
rameters

A = n1 A1 + n2 A2 + n3 A3 + n4 A4 (7)

with the coefficients of the plane of light as linear combina-
tion coefficients. As a result, so does H:

H = n1 H1 + n2 H2 + n3 H3 + n4 H4 . (8)

Explicitly,
A1 = (rt

11T1) I + (Rt
2T2 −Rt

1T1) et
1

A2 = (rt
12T1) I + (Rt

2T2 −Rt
1T1) et

2

A3 = (rt
13T1) I + (Rt

2T2 −Rt
1T1) et

3

A4 = −I

(9)

where r11, r12, r13 are the three columns of the rotation
matrix R1 = [r11 r12 r13] and e1, e2, e3 are unit basis
vectors (e.g. e1 = [1 0 0]t). Finally Hj = R2AjR

t
1 for

j = 1, 2, 3, 4.

3.4. Homography Estimation

Pairs of image points (uj
1, u

j
2), j = 1, . . . , N , corre-

sponding to the same point on the three-dimensional curve
are determined using epipolar geometry. For now, assume
that each epipolar line intersects the imaged curve at ex-
actly one point. Thus the corresponding image points are
uniquely determined. The general case of epipolar match-
ing is discussed in Section 4. Each of the image point pairs
satisfy the homography equation ξju

j
2 = H uj

1 for a dif-
ferent scale factor ξj . The scale factor is eliminated in the
usual way (using a cross product), yielding two equations in
H for each point pair:

ûj
2 H uj

1 = 0 (10)

where, if

uj
2 =

uj
21

uj
22

1

 then ûj
2 =

[
1 0 −uj

21

0 1 −uj
22

]
.

Equations (10) and (8) are combined to obtain the following
matrix equation[

ûj
2 H1 uj

1 | û
j
2 H2 uj

1 | û
j
2 H3 uj

1 | û
j
2 H4 uj

1

]
n = 0 .

(11)
Denote the 2 × 4 matrix within the brackets as Lj , and
the 2N × 4 matrix resulting from vertically concatenating
L1, . . . , LN as L. In the absence of measurement noise the
linear equation Ln = 0 should be satisfied, which implies
that the matrix L should be rank-deficient, i.e. rank (L) < 4.
The solution is unique if rank (L) = 3, which is the typical
case. In practice there is measurement noise, and the solu-
tion is computed using the Singular Value Decomposition
of the matrix L as the right singular vector corresponding
to the minimum singular value. The second smallest singu-
lar value should be significantly larger than the minimum
one.



If the points illuminated by the plane of light happen to
be colinear, then a plane containing them is not uniquely de-
termined. This singular case corresponds to rank (L) = 2.
The handling of this degenerate case is discussed later on.
Note, however, that the location of the three-dimensional
points can still be estimated from triangulation.

3.5. Reconstruction of Point Locations

First consider the non-singular case when a unique plane
of light Π can be determined. For each image point pair
(uj

1, u
j
2), a point pj in three dimensions is determined as

follows: 1) Compute a point p̂j by standard triangulation.
That is, compute the closest point to rays defined by uj

1 and
uj

2; and 2) Compute the point pj as the orthogonal projec-
tion of p̂j onto the plane Π. For points visible from only
one camera (due to occlusion or indeterminate correspon-
dence), use equations (1) and (3) to compute pj as the inter-
section of the ray defined by uj

1 (or uj
2) with the the plane

Π.
Alternatively, points visible in both views could be re-

construct by ray-plane intersections independently. The re-
sulting points could be averaged to produce a single recon-
structed point. This method produces larger error than tri-
angulation. The magnitude of the error in the reconstruc-
tion from each view depends on the angle between the ray
and plane. As a result, one reconstruction may have much
larger error than the other. Averaging these points with
equal weight does not account for this and results in lower
accuracy.

3.6. Singular Reconstruction

If the numerical rank of the matrix L is 2, the two right
singular vectors associated with the two smallest singular
values define two planes whose intersection is the line sup-
porting all the illuminated points. Hence, the points lie on
a line in three dimensions. Define the plane condition num-
ber κΠ as the ratio of the second smallest to the largest sin-
gular value of L. When κΠ is small, the rank approaches 2
and the plane estimate becomes unstable. Points visible in
both views can still be reconstructed as before, even as the
plane becomes degenerate. However, reconstructions from
only one view are poor in this case. To avoid this, single
view reconstructions are not computed when κΠ exceeds a
threshold. In practice, only points visible in both views are
reconstructed when κΠ < 0.03.

4. Scanner Implementation

Using the reconstruction technique in Section 3 we im-
plemented an interactive scanning system described below.

The system currently operates at about 4.5 frames per sec-
ond and provides immediate iteratively updated reconstruc-
tion results. This allows the user to direct the laser to re-
gions of sparse or missing data.

4.1. System Hardware

As in [11], a laser line projector is constructed from a
cylindrical lens and a laser pointer. A small length of 6mm
diameter Pyrex glass rod is attached to the front of an inex-
pensive consumer grade laser pointer. The quality of laser
line generated is sufficient for our purposes. We found that a
clear acrylic rod of the same dimensions resulted in a speck-
led line and was not suitable. However, using a stock glass
rod for the lens was acceptable and a precision cylindrical
or line generating lens was not required.

To capture a stereo sequence of images we used a pair
of synchronized 1394b cameras capturing at a resolution
of 1024 × 768. Each camera is mounted on separate tri-
pod (Figure 1) so that the working volume can be adjusted
for objects of various sizes. The cameras are positioned such
that many points on the surface of the object are visible in
both views while some additional points are visible only in
one view. As with standard triangulation, a larger baseline
results in more accurate reconstructions. The cameras may
be calibrated in advance of scanning using any of the stan-
dard calibration techniques [13].

Our method is also compatible with the camera configu-
ration used by Davis and Chen [11]. They use a single cam-
era and mirrors capture two views of an object in a single
image. This offers an even less expensive alternative to a
synchronized stereo pair of cameras.

4.2. Line Detection and Matching

The laser line is detected independently in each image.
A mean image is computed and subtracted from the current
image. This removes the appearance from ambient light-
ing and leaves only the laser line. Gaussian smoothing and
peak detection are applied to estimate the curve points. The
points are then refined to subpixel location using parabolic
interpolation. Finally the curve points are linked using stan-
dard edge linking to produce piecewise linear curves.

Correspondences are computed by rectifying the de-
tected curves using homographies that map the epipoles to
infinity, align the epipolar lines, and roughly preserve scale
(refer to Chapter 10.12 of [13]). The curves are resampled at
equal intervals in the rectified space resulting in a set of cor-
respondences along epipolar lines. In practice, some points
may have multiple correspondences. Davis and Chen [11]
address this problem by discarding all ambiguous corre-
spondences. The approach in this paper allows these am-
biguities to be resolved by using the estimated homogra-



phy, H , resulting in a more detailed reconstruction. How-
ever, the homography parameters must first be estimated as
in Section 3 using unique correspondences. The ambiguous
correspondences are discarded for the purpose of homogra-
phy estimation.

Estimating the homography from the remaining unique
correspondences is still problematic. An ambiguous cor-
respondence combined with an occlusion can produce a
unique, but incorrect, correspondence. These incorrect cor-
respondences are outliers and make up a small portion of
the data in practice. Yet a single outlier can introduce a sig-
nificant amount of error in a linear estimate. To compensate
for this, RANSAC [12] is used. RANSAC is applied to the
set of unique correspondences to get a robust estimate of the
homography and discard outliers. RANSAC uses subsets of
three correspondences to find many non-degenerate solu-
tions to the estimation problem resulting from (11). Given a
randomly selected subset of three correspondences the pa-
rameters of plane Π are computed and H is recovered as in
(8). For each correspondence (uj

1, u
j
2), the symmetric trans-

fer error is computed:

Ej =
√

(H uj
1 − uj

2)2 + (H−1 uj
2 − uj

1)2 (12)

where distances in (12) are computed using inhomoge-
neous coordinates. Ej is small for correspondences agree-
ing with H (inliers) and large for others (outliers). Apply-
ing a threshold to Ej classifies correspondence j as an in-
lier or outlier. In practice RANSAC is not very sensitive to
the value of this threshold. The experiments in Section 5
uses a threshold value of 2. After RANSAC finds the so-
lution with the most inliers, The same threshold procedure
is applied to the ambiguous correspondences to find addi-
tional inliers. A final estimate of Π is computed using all of
the inliers.

5. Evaluation and Results

To evaluate the accuracy of the algorithm, two sim-
ple objects of known dimension, a cylinder and a sphere,
were scanned. The diameter of the cylinder is 3.125 inches
(79.375 mm) and the diameter of the sphere is 4 inches
(101.6 mm). Points visible in both views were reconstructed
by triangulation and triangulation with the planarity con-
straint for comparison. Figure 4 shows the reconstructions
by triangulation. The reconstructions using the planarity
constraint have a similar appearance.

Cylinder and sphere models were fitted to the pairs of re-
constructions using Gauss-Newton iteration to find a least-
squares solution. The triangulated cylinder data had a diam-
eter of 79.60 mm (0.28% off) and standard deviation from
the estimated surface of 0.6299 mm. The plane restricted
cylinder data set had a diameter of 79.13 mm (0.31% off)
and a standard deviation of 0.5447 mm. While the error

(a) Camera views (b) Triangulated points

Figure 4. Reconstructions of known objects
used for evaluation

in diameter is essentially comparable, the standard devia-
tion of the results obtained using the planarity constraint
is 13.5% smaller. Figure 5 shows histograms of the two
datasets.

The triangulated sphere data had a diameter of 101.77
mm (0.17% off) and a standard deviation of 1.825 mm. The
plane restricted sphere data set had a diameter of 101.74
mm (0.14% off) and a standard deviation of 1.571 mm.
Again the estimates are very accurate, and the application
of the planar constraint reduces the standard deviation of
the points by about 13.9%.

Figure 6 shows example reconstructions of various ob-
jects. Compared are triangulated points, points recon-
structed from both views as described above, and these
points combined with points reconstructed from a sin-
gle view. The 3D points have been colored by projecting
back into the mean ambient light image. Note the reduc-
tion of outliers from (b) to (c) and the increased number of
points from (b) to (d). The top example (the frog model) re-
sults in 50,986 points from triangulation. Our method
reconstructs 47,271 points from both views since many tri-
angulated points are deemed to be outliers. An additional
46,734 and 10,483 points were reconstructed from only the
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Figure 5. Histograms showing the distribu-
tion of distances from the corresponding fit-
ted cylinder models.

right and left views respectively. In total, our method re-
sults in 104,488 points, more than twice that of standard
triangulation.

6. Conclusions and Future Work

This paper has introduced a planar constraint for the 3D
reconstruction of points in an inexpensive laser scanning
system. The plane is estimated directly from the image data
with no need for tracking the laser projector. The estimated
plane is used to detect and remove outlier points, constrain
the points to lie within the plane, and reconstruct additional
points observed only by one camera. Applying the planar
constraint to the triangulated points has been shown to re-
duce the standard deviation of the reconstruction error. Af-
ter closer examination, it appears that the improved accu-
racy may be mostly due the elimination of outliers in the
triangulated data. A preliminary investigation has indicated
that in portions of the data the reconstruction accuracy is
not significantly improved by projecting onto the plane. We
will continue to investigate this issue and also evaluate other
methods for 3D reconstruction using the planar constraint.

A natural extension of the work done here would be
to take advantage of the fact that all reconstruction meth-
ods are viable for any number of cameras greater than or
equal to two. One can envision a system containing multi-
ple pairs of cameras arrayed around an object, where the
single viewpoint reconstruction capability of this system
was fully exploited in addition to triangulation with the pla-
narity constraint to obtain very complete and accurate scans.
Additionally, we may investigate automatic recovery of the
extrinsic camera calibration parameters using the detected
laser curves. This could be done using detecting features
of the curves or simply by removing the cylindrical lens
and detecting the laser point projected on the surface. This

would simplify the calibration step currently required.
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(a) Camera views (b) Triangulated points (c) Points from both views (d) All reconstructed points

Figure 6. Camera views and reconstruction results using triangulation and our method. Points in (c)
are reconstructed from both views and (d) shows the addition of points seen only from one view.


