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Abstract 

 
In this paper, we present a new efficient method for 

accurate eye localization in color images. Our 
algorithm is based on robust feature filtering and 
explicit geometric clustering. This combination 
enhances localization speed and robustness by relying 
on geometric relationships between pixel clusters 
instead of other properties extracted from the image. 
Furthermore, its efficiency makes it well suited for 
implementation in low performance devices, such as 
cell phones and PDAs. Experiments were conducted 
with 1532 face images taken from a CCD camera 
under (real-life) varying illumination, pose and 
expression conditions. The proposed method presented 
a localization rate of 94.125% under such 
circumstances. 
 
 
1. Introduction 
 

Automatic extraction of human face and facial 
features (eyes, nose and mouth, for example) is an 
essential task in various applications, including face 
and iris recognition, security, surveillance systems and 
human computer interfacing [1, 2, 3, 4, 5]. Facial 
feature detection and localization (FFDL) is a very 
important problem to be solved, because it provides 
meaningful input for most face processing algorithms. 
However, it is a computationally difficult task due to 
the myriad of illumination, pose, and expression 
possible combinations. 

A general agreement is found in FFDL literature, 
pointing out that the eyes are the most important facial 
features [3, 4, 6], so most research effort in FFDL has 
been devoted to eye localization (EL). There are 
several reasons for this outstanding importance of the 
eyes over other facial features [3, 4, 6, 7]: eyes reveals 
information about the state of human beings; a face 
contains two eyes (if not occluded), so its position, 

scale and orientation can be estimated from the eye 
positions; and the appearance of eyes is less variant to 
face changes (than eyebrows, nose, ears and mouth, for 
example). Moreover, accurate EL provides means to 
identify all the other facial features of interest [1]. 

Although all research effort made in last years [1, 3, 
6, 7, 8, 9, 10, 11, 12, 13, 14], EL remains an open 
problem due to increasing demand of accuracy and 
speed in eye localization [1, 3, 4]. It is well known that 
the behavior of face processing methods (face 
recognition, in particular) in real-life applications 
strongly depends on precise EL [1, 13]. In this context, 
most approaches to EL are not accurate enough or 
perform very poorly in terms of efficiency, especially 
when cascaded AdaBoost classifiers [5] are used and 
the eyes are successfully localized [5, 8] – the most 
time consuming case for this kind of methods. 

In this paper, we present a solution to the EL 
problem which should be performed after face 
localization and is based on a robust feature filter and 
explicit geometric clustering. Moreover, our heuristic 
algorithm is efficient enough to be implemented in eye 
tracking for low performance processor devices. 

This paper is organized as follows. Overview and 
related work is discussed in Section 2. The proposed 
method is detailed in Section 3 and evaluated in 
Section 4. Finally, conclusions are left to Section 5. 
 
2. Overview 
 

In this section we give a brief overview on the state-
of-the art in eye localization. In the first subsection, we 
discuss how accuracy is measured for this problem and 
the importance of accurate methods. Related work is 
presented along the second subsection, and discussed 
in the third subsection. 
 
 
 



2.1. Measuring eye localization accuracy 
 
Eye localization accuracy is usually expressed as 

statistics of a given error measure (e.g., Euclidean 
distance), considering the true, manually annotated eye 
centers and the automatically estimated eye positions 
over a face dataset [4]. In order to make these statistics 
suitable for comparisons between different datasets, it 
is necessary to normalize the error measure based on 
the face scale, which can be estimated based on the eye 
distance (Figure 1). 

 
Figure 1. Cl and Cr represent exact eye centers, while 
the respective estimated eye centers are represented 
by •l and •r. ||Cl – Cr || can be used to estimate accuracy. 

 
Jesorsky et al. [3] proposed a normalized worst case 

error measure by using the upper bounds for estimating 
localization accuracy on a given face. Such metric 
became relatively popular, and can be expressed as 
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EL literature points out that deye ≤ 0.25 roughly 

corresponds to a distance smaller than the eye width 
and therefore it can be used as criterion to claim eye 
localization [1, 3, 4, 7]. However, this accuracy level 
may not be sufficient when localized positions are used 
for some face processing techniques, specially in the 
case of face recognition methods. 

Campadelli et al. [1] studied the relationship 
between deye and the face recognition rate of baseline 
recognition methods and their own method. They 
simulated error measures and concluded that 
recognition rate arising from PCA, LDA and Bayesian 
methods strongly depends on accurate eye localization. 
Recognition rate on these methods rapidly decreases as 
the error increases, being less than 0.25 when deye ≤ 
0.15. Nevertheless, this is not surprising, since most 
methods are developed focusing only the face 
recognition task. 

 
 

2.2. Related work 
 

Jesorsky et al. [3] highlighted the strong 
dependency of the FR performance and the accuracy of 
the face alignment. They proposed both an eye 
localizer and a measure to evaluate quantitatively the 
performance of this class of methods. Their method is 
model-based, performing a coarse-to-fine search using 
the modified Hausdorff distance. The found positions 
are refined by applying a multi-layer perceptron trained 
with pupil centered images. 

Ma et al. [4] proposes a three-stage method for 
robust and precise eye localization based on a 
probabilistic interpretation of the output of cascaded 
AdaBoost classifiers [5]. Their method works on 
upright frontal faces. Similarly, Tang et al. [6] 
combined cascaded AdaBoost and Support Vector 
Machine (SVM) classifiers. Their method also consists 
on three stages: AdaBoost face detection; AdaBoost 
eye detection; and a SVM post classifier that validates 
the reported positions. 

Campadelli et al. [1] developed a SVM-based 
localization method that can be applied to the output of 
face detection methods. Their system is top-down, and 
relies on a SVM trained on optimally selected Haar 
wavelet coefficients. Eye localization is performed in 
two steps: eye detection, which validates the output of 
the face detector at the same time it provides an 
estimate of the eye positions; and eye localization, 
which refines the precision by using the specific eye 
pattern definition. 

The method presented by Wang at al. [8] also uses 
the AdaBoost algorithm. The authors propose the 
adoption of Recursive Nonparametric Discriminant 
Analysis (RNDA) to overcome the limited 
discriminant capabilities of the Haar wavelet.  RNDA 
is used to extract more effective features and to provide 
sample weights useful for the AdaBoost algorithm. As 
result, the classifier contains only two layers: the first 
has just two features – thus it is very fast, while the 
second has about 100 features in order to refine the 
search. 

Titive and Bouzerdoum [9] proposed an eye 
detection approach based on a convolutional neural 
network, in which the feature extraction neurons are 
based on bio-physical mechanism of shunting 
inhibition. As each layer of the network acts as a 
convolution filter followed by a down-sampling 
operation, their method can process an entire input 
image and generate an output location map which is 
four times smaller than the original input image. As 
result, face detection can be performed efficiently as a 
real-time system. 



Fu et al. [15] presented an efficient method for face 
detection and eye localization using neural network for 
color segmentation. A self-growing probabilistic 
decision-based neural network (SPDNN) is used to 
learn the conditional distribution for each color classes. 
Pixels of a color image are first classified into facial or 
non-facial regions, so that pixels in the facial region 
are followed by eye region segmentation. The class of 
each pixel is determined by using the conditional 
distribution of the chrominance components of pixels 
belonging to each class. However, skin tone detection 
does not perform equally well on different skin colors 
and is sensitive to changes in illumination [3]. 

The method developed by Niu et al. [10] is based on 
AdaBoost classifiers, while bootstrapping on both 
positive and negative examples. Their training 
procedure allows for reducing the false alarm at the 
same time detection rate is augmented. The authors 
propose two different localization procedures: one by 
weighting the resulting classifiers, which results on 
effective but time consuming detection; and the other 
cascading these classifiers, which stops in 
correspondence to the first one which detects at least 
one region, thus drastically reducing time 
consumption. 

Everingham and Zisserman [11] presented and 
compared three approaches for eye localization: a 
regression method which directly minimizes the 
prediction error; a Bayesian approach, consisting on 
two distinct, independently built probabilistic models 
of the eye and non-eye appearance; a single strong 
classifier trained for eye detection using AdaBoost. All 
the methods are trained and tested on the same images, 
and during detection they are applied in cascade to a 
Viola-Jones face detector. Results show that the simple 
Bayesian model outperforms the others. The authors 
explain this fact by drawing attention to the difficulty 
of using classifiers for the task of localization. 
 
2.3. Discussion 

 
Eye localization methods shown in the last 

subsection reported acceptable performance and 
accuracy on images containing upright frontal faces, 
supporting head rotations in and out of the plane. 
However, it is difficult to establish a reasonable 
comparison of their results due to the lack of a standard 
error metric [3]. 

Most of these methods are built on top of the work 
by Viola and Jones [4, 6, 7, 8, 10, 11], using cascaded 
AdaBoost classifiers for effective localization of faces 
or the eyes themselves. Here are some important 
observations about this kind of methods: 

 multi-scale detection of faces affects 
performance, since the input image has to be 
scanned multiple times at different scales.  
This is also valid for classifiers trained with 
fixed scale; 

 eye localization can be performed more 
efficiently, because a rough estimate of scale 
is available when a face is found, making it 
possible to dramatically reduce the number of 
iterations over eye scales. 

 the same integral image used for finding faces 
can be reused for this task, in the case a Viola 
and Jones detector is used for eye localization; 

 assuming upright faces, each eye lies in a sub-
region that is roughly four times smaller than 
the reported face's estimated size – by  
searching the left (right) eye only in the upper 
left (right) part of the face region; 

 EL accuracy depends on the scanning 
algorithm. Errors can arise due to iteration 
over different scales, and the merging process 
when multiple detections are reported, among 
other situations [5, 8]; 

In general, eye localization methods consist on 
classifiers built using a combination of well-known 
approaches for pattern recognition and machine 
learning: neural networks, SVM, boosting, regression, 
Bayesian modeling, among others. We propose a new 
eye localization method that is based on a simpler 
approach and exploits visual clues present in color 
images. Multi-scale localization is naturally supported 
due to the geometric nature of the clustering algorithm 
used as part of the search. 

 
3. CLUED: clustering-based eye detection 
 

Our method is integrated into an eye localization 
system consisting on two phases: face detection and 
eye localization. The system is depicted by Figure 2. 
We build on top of the work by Viola and Jones [5], 
and rely on their method for detecting upright frontal 
faces before starting eye localization. Actually, any 
method providing a reliable estimate of face position 
and size can be used at this first phase. 

Eye localization consists on three steps, which are 
explained in detail along the next subsections: feature 
segmentation; point clustering; and eye localization. In 
the first step, face region is segmented in order to 
obtain candidate feature points. The resulting points 
are then grouped in clusters in the second step. Finally, 
in the third step, clusters representing the eyes are 
selected and the eye positions are determined. 



 
Figure 2. Overview of our eye localization system. 
First, face position and scale is estimated using a 
reliable method, and then eye localization (denoted by 
the dotted box) is performed. 

 
3.1. Feature segmentation filter 
 

In this step, we want to select candidate points 
representing the eyes. This step is carried out using the 
rg-normalized color space, which is derived from the 
RGB color space by normalizing (dividing) each 
component by the sum of the red, green and blue 
intensities. 

This color space has two important properties for 
this purpose: the dependency of r and g on the 
brightness is greatly diminished after normalization; it 
is relatively invariant to changes of surface orientation 
relative to light sources [12]. Due to this, rg-
normalized color space was applied in human skin 
segmentation [13].  

For developing our feature filter, first we observe 
that human faces consist in two parts: skin, mainly on 
the forehead, cheeks and nose; and facial features, such 
as the eyes, eyebrows and nostrils. Due to nature of 
skin, it is possible to roughly distinguish between skin 
and these features by considering only the rn 
component in the rg-normalized space, as shown in 
Figure 3. 

 
Figure 3. Color face images (a) representing different 
conditions of face acquisition found in real-life (skin 
color, illumination, eyeglasses, noise), and each 
corresponding rn image (b) highlighting features, 
specially the eyes. Faces were aligned and rescaled 
from their original poses for presentation purposes. 

 
Let us define an RGB image I as a function 

mapping two integers, representing a given pixel, into 
the corresponding red, green and blue components 
denoted by Ir, Ig and Ib, respectively 
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where ci denotes bit depth in the channel i (r, g, or b). 

For convenience, the conversion from I to rn was 
slightly modified by adding 1 to the denominator in 
order to avoid divisions by zero. Moreover, we 



consider the complement of rn, since facial features 
tend to dark in this color space. Such conversion is 
defined as 
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Once the conversion is done, histogram equalization 

is performed over RI in order to enhance robustness of 
our feature segmentation, resulting in a monochromatic 
image 
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Finally, a threshold is applied in order to segment 

facial features, resulting in a binary image TI, defined 
as 
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Noise and other features such as the mouth, nostrils 

and eyebrows may appear in TI (see Figure 4). 
However, the goal of this step is to find candidate eye 
regions used in the subsequent steps. 

 

 
Figure 4. Result of feature segmentation over faces 
from Figure 3-a. Eye regions are highlighted by using 
t=0.96, and only one eye was lost (2% error in this 
case). Segmentation also produces “artifacts” arising 
from noise, nostrils, eyebrows, eyeglasses and beard. 

 

3.2. Efficient point clustering 
 

At this stage, the problem of localization is solved 
from a geometric perspective, where candidate points 
are grouped into clusters for further localization. The 
input for the clustering algorithm is expressed as the 
set of all candidate feature points resulting from the 
feature segmentation 

 
{ }1),()),(arg( == yxTyxTP III . 

 
Contrary to Armanag et al. [14], which proposed a 

color tone-based clustering algorithm for correcting 
their Bayesian eye classifier, we employ a purely 
geometric clustering method. More specifically, we 
adapted the k-means algorithm [16] to our problem. 
Given the point set PI and the desired number nc of 
clusters to compute, the clustering method iteratively 
moves the (randomly placed at startup) cluster centers 
qj by selecting the nearest points in PI. Each cluster 
center qj is then recomputed before the next iteration 
takes place, by selecting the mean of the points nearest 
to qj. This is illustrated by Figure 5. 
 

 
Figure 5. Clustering algorithm, as proposed by 
MacQueen [16]. Initial cluster centers are randomly 
chosen at the start (a). The nearest neighborhood is 
computed (b), and then each cluster qi center is 
updated to the mean of its neighborhood before the 
next iteration is executed. 

The method stops when cluster centers stop moving 
(thus convergence is found), or when points are 



moving from one cluster to another. Actually, this 
method presents very fast convergence [15], so only k 
iterations are usually allowed. Our experiments show 
that 5 iterations are sufficient for convergence when 
using up to 36 clusters. Final result of clustering is 
depicted in Figure 6, in which clustering considers 
candidate points reported from the entire face for 
explanation purposes. Actually, our algorithm assumes 
face detection has taken place and only the upper part 
of the face region is processed. 

 

 
Figure 6. Result of feature segmentation, followed by 
point clustering using t=0.96, k=5, nc=8. 

 
In addition, we build a kd-tree considering the 

current position of cluster centers per iteration. This 
spatial data structure is built in O(nclog(nc)) and allows 
to find the closest cluster center for a given point in 
O(log(nc)). Because of this, the clustering step 
performs in O(k(p+nc)log(nc)), where p denotes the 
number of candidate feature points for a given face. As 
nc is much smaller than p and k is constant, the 
clustering algorithm complexity is O((p)log(nc)). Any 
spatial acceleration data structure, such as a Quadtree, 
can be used to speedup the search for nearest cluster 
center. We used a kd-tree because it is very compact 
and more flexible to build than a Quadtree. 

Once point clustering is finished, finding the eyes is 
a relatively simple problem to solve. As preprocessing, 
the face scale estimate is used to remove very large and 
very small clusters, representing noise, other features 
(nostrils, eyebrows), eyeglasses and hair. By assuming 
that clustering only considers the upper half of the 
image, the eyes are represented by two clusters: one in 
the left upper part (the left eye); and the other in the 
right upper part (the right eye). Moreover, it is assumed 
that eye localization fails when no cluster is present in 
a given side of the image. 

After this point, the problem of localization is 
solved by choosing an adequate cluster to represent 
each eye. This is performed by iteratively scanning the 
few resulting cluster points for the greatest ball in each 
side of the image that is closest to the image center, 
while constraining the in-plane rotation to a maximum 
of 10º. Figure 7 illustrates the results corresponding to 
images presented in Figure 3-a. 

 
Figure 7. Eye localization based on point clustering 
using t=0.96, k=5, nc=8. Our simple method missed 
only 2 eye pairs from 49 faces in Figure 3a, and only 
reported 1 wrong eye pair – when the user is wearing 
thick eyeglasses. In this case, localization rate is 
93.87% and average deye is less than 0.085. 
 
4. Evaluation and discussion 
 

The error rate criterion proposed by Jesorsky et al. 
[3] was adopted in order to evaluate the accuracy of 
our eye localization method, since this measure 
provides means for comparing accuracy between 
different face databases. Experiments were conducted 
with 1532 face images taken from 61 people using a 
CCD camera under (real-life) varying conditions of 
illumination, pose and accessories. CLUED presented 
a localization rate of 94.125% under there 
circumstances. Moreover, it presented 
average(deye)<0.091, which is suitable for most face 
processing techniques since an error of 0.25 is the 
lower bound in literature for claiming eye localization 
[1, 3, 4, 7]. Our method also compares favorably 
against well-known EL algorithms operating over face 
detection algorithms [1, 3] for deye < 0.1, as shown on 
Table 1. 

From the perspective of efficiency, our method 
provides a fast solution for eye detection, allowing for 
real-time performance. In particular, a kd-tree is used 
for cluster center updates during the clustering step, 
thus performing faster than an exhaustive k-means 
implementation. Furthermore, the clustering step 
allows for multi-scale eye detection without requiring 
any additional effort. Because of its efficiency, our 
method was successfully implemented in low 



performance embedded devices: acceptable speed and 
accuracy were also presented in this situation – about 5 
frames per second on QVGA images. 

 
Table 1. Eye localization rate when deye < 0.1. The real 
localization rate in this case is not clear in [3], so we 
assumed a safe upper bound. 

EL method Face database EL rate for 
deye < 0.1 

CLUED custom 92.6% 
Campadelli et al. BioID 83.8% 
Campadelli et al. XM2VTS 95.9% 

Jesorsky et al. BioID about 93% 
Jesorsky et al. XM2VTS about 80% 
 
Our algorithm is simple and supports head rotations 

up to 10º in and out of the plane. Moreover, this 
upright frontal face restriction is not intrusive and it is 
adequate for almost any real-life systems assuming 
user cooperation. As experiments show, accessories 
can affect EL rate and accuracy. However, our simple 
algorithm performed reasonably well even in this 
situation (about 75% of EL). 

A better feature filtering technique may improve EL 
rate and accuracy, because the technique proposed in 
this paper may not work properly in adverse 
illumination situations, as occurs for third column, first 
row in Figure 7. Other cluster selection criterion may 
also yield better results, since fails may occur for 
simple or more difficult situations when the user is 
using accessories. Such cases are depicted by faces 
placed at the third column, second row; and the second 
column, sixth row in Figure 7, respectively. 
 
5. Conclusions 
 

Automatic, accurate eye localization is a very 
important problem in biometrics because it provides 
meaningful input for most face processing algorithms. 
Moreover, all other face features of interest can be 
identified based on the eye positions. Most methods 
found in EL literature are inaccurate or perform poorly 
in terms of speed, thus affecting the behavior of real-
life face processing applications. 

In this work, we present an efficient solution to the 
EL problem, which should take place after face 
detection. Our method is based on a robust feature 
filter and explicit geometric clustering, allowing for 
robust and precise eye localization. Moreover, our 
heuristic algorithm is efficient enough to be 
implemented in eye tracking systems for low 
performance processor devices. 

The proposed method presents a localization rate of 
94.125% under the minimal requirements for eye 
localization is met, and compares favorably against 

well-known EL algorithms operating over face 
detection algorithms under precise localization 
situations. Future work includes adapting our technique 
in order to handle grayscale images. 
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