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Abstract 
 

Classifier combination experiments using the 
Multilayer Perceptron (MLP) were carried out using 
noisy soil science multispectral images, which were 
obtained using a Tomograph scanner. Using few units 
in the MLP hidden layer, images were classified using 
a single classifier. Later we used classifier combining 
techniques as Bagging, Decision Templates (DT) and 
Dempster-Shafer (DS), in order to improve the 
performance of the single classifiers and also stabilize 
the performance of the Multilayer Perceptron. The 
classification results were evaluated using Cross-
Validation. The results showed stabilization of 
Multilayer Perceptron and improved results were 
achieved with fewer units in the MLP hidden layer.  
 
1. Introduction 
 

There are many techniques for combining multiple 
classifiers. They appeared on literature mainly in the 
past 20 years. The idea behind combiners is that 
different individual classifiers can offer 
complementary information about the objects to be 
classified. Instead of using just one classifier, a safer 
option would be to use many classifiers and combine 
their outputs [1]. The combination of classifiers has the 
intuitive purpose to improve performance, specially on 
challenging problems like handwriting recognition and 
others. 

In previous works, material analysis on soil science 
multispectral images were performed using statistical 
classifiers and simple combining rules with good 
results [2][3]. In this paper we present a set of 
experiments with a neural-network based classifier in 
order to recognize materials in noisier soil science 
multispectral images, obtained with less exposure time. 
These images were initially classified by a single 

Multilayer Perceptron classifier and later some 
combining techniques (Bagging, Decision Templates 
and Dempster-Shafer) were investigated. We also 
present a performance comparison between the 
individual classifiers and the combiners. The results 
were evaluated by the estimated error, obtained using 
the Cross-Validation technique. This paper also 
extends previous works [4][5] that presented some 
preliminary neural networks improvements using 
classifier combination. 
 
2. Image Acquisition 
 

The computerized tomograph (CT) scanner used to 
acquire the images is a first generation equipment 
developed by Embrapa in order to explore applications 
in soil science. It has fixed X and γ-ray sources, while 
the object being studied is rotated and translated. All 
the system hardware and software was developed by 
Embrapa [6]. 

In this work we used images of a phantom 
containing four materials commonly found in soil: 
calcium, phosphorus, water and aluminum. The 
phantom has a cylindrical base of plexiglass (polymer), 
and has four cylinders inside, each one containing one 
of the materials, as shown in Figure 1. 

The images were obtained using two X-ray sources 
and two Γ-ray sources (Cesium and Americium). The 
X-ray energies were 40keV and 85keV. The Γ-ray 
sources were 662keV (Cesium) and 60keV 
(Americium). The images have a resolution of 65x65 
pixels, and were obtained using only 3 seconds of 
exposure. After the reconstruction with the filtered 
backprojection algorithm, they were normalized to 256 
levels of gray, which are proportional to the values of 
the physically observed linear attenuation coefficients. 
The four images are shown in Figure 2. Together they 



compose a multispectral image, which is the object of 
study of this work. 

 
 

 
Figure 1. Phantom construction diagram with 

dimensions and materials 
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Figure 2. Multispectral image bands acquired by 
an X and γ-ray CT scanner with multiple energies: 

40keV, 60keV, 85keV and 662keV 

 
 
3. Classification Methods 
 

Classification was first performed using individual 
Multilayer Perceptron classifiers. Later, Bagging 
technique, Decision Templates and Dempster-Shafer 
classifier combiners were used in order to improve the 
performance of the single classifiers. 

3.1. The Multilayer Perceptron 
 

The Multilayer Perceptron is composed by a set of 
sensorial units organized in three or more layers. The 
first layer is the input layer, which does not perform 
any computational task. Then there are one or more 
hidden (intermediate) layers and an output layer, all 
composed by computational nodes. In a typical MLP 
network all the nodes from a layer are connected with 
every node from the previous and from the next layer. 
There are no connections between nodes in the same 
layer, neither there are connections between nodes on 
non-adjacent layers. The non-computational nodes in 
the input layer use an identity function, while the 
computation nodes in the intermediate and the output 
layers use a sigmoid function [7]. 

This kind of neural network has been used with 
success to solve difficult problems through its training 
by using the error backpropagation algorithm, which 
basically consists of two steps: a forward step where 
the signal propagates through the computational units 
until it gets to the output layer; and a backwards step 
where all the synaptic weights are adjusted accordingly 
to an error correction rule [8]. 
 
3.2. Bagging 
 

Bagging was created by Breiman [9] and is an 
acronym for Bootstrap AGGregatING. This method 
consists of creating bootstrap replicas of the training 
set and then training a different classifier with each 
replica. The outputs from each classifier are combined 
using majority voting. The bootstrap sets are built 
randomly from the original training set using 
substitution. To take advantage of this method it is 
essential that the base classifier be unstable, where 
minor changes in the training set can lead to major 
changes in the classifier output. Otherwise, we will 
have just a set of almost identical classifiers and 
combining them would lead to little or no 
improvement in the classification at all. An example of 
stable classifier is the K-Nearest Neighbor, while the 
Multilayer Perceptron is an example of an unstable 
classifier. 
 
3.3. Decision Templates 
 
When using classifiers that give us continuous-valued 
outputs (like MLP) we can treat the outputs as 
confidences in proposed labels and estimates of the 
posterior probabilities for each class. Let nx ℜ∈  be 
the feature vector and },...,,{ 21 cωωω=Ω  be the 



set of labels from each class. Each classifier iD  from 

a given set },...,{ 1 LDDD = provides c degrees of 
support. We can assume that all the c degrees are in the 
[0, 1] interval, that means cn

iD ]1,0[: →ℜ . The 

notation )(, xd ji  represents the support degree that 

the classifier iD  gives to x being from the class jω . 

The L outputs from the classifiers for a given input x 
can be organized in a matrix called decision profile 
(DP(x)), organized as follows: 
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In this combiner the idea is to remember the most 
typical Decision Profile (DP) for each class, and call 
them the Decision Template (DT) of each class. Then, 
when we want to classify a given sample we build its 
DP and compare it with the DT of each class using 
some measure distance (like the Euclidean distance). 
The closest match will label the sample [1]. 

To calculate a decision template for the j classes we 
take the mean of the decision profiles )( kzDP  from 

all the members of jω  from the training data set Z: 
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where jN  is the number of elements from Z that 

belongs to jω . 

To classify a sample, we construct its decision 
profile )(xDP  and calculate the similarity S between 

)(xDP  and each jDT : 

)),(()( jj DTxDPSxu =  j = 1,…,c. (3) 

 
3.4. Dempster-Shafer 
 

Dempster-Shafer (DS) is based on the Evidence 
Theory, proposed by Glen Shafer as a way to represent 
cognitive knowledge. In this formalism the best 

probability representation is a belief function, rather 
than a Bayesian distribution. Probability values are 
assigned to a set of possibilities instead of unique 
events. Its appeal is in the fact that they code evidences 
rather than propositions. It provides a simple method 
of combining evidences from different sources 
(Dempster rule) without any a priori distribution [10]. 

The training algorithm for DS is the same algorithm 
used to train the DT combiner, where the DT´s for 
each class are found from the training data. The 
difference here is that instead of calculating the 
similarity between the DP of a given sample and each 
DT, we calculate the closeness between the DT and the 
output of each classifier. These closeness values are 
used to calculate a belief degree for each classifier for 
each one of the classes. The final degrees of support 
for each class are calculated from the belief degrees 
[1]. These steps are described below: 

Let i
jDT  be the ith row of the decision template 

jDT  and )(xDi  be the output of iD , that is, 
T

ciii xdxdxD )](),...,([)( ,1,= : the ith row of the 

decision profile DP(x). We calculate the “proximity” 
φ  between i

jDT  and the output of the iD  classifier 

for some input x: 
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where || . || is any matrix norm. For example, we can 
use the Euclidean distance between the two vectors. 
So, for each decision template we will have L 
proximities. 

Using the last equation we can calculate for every 
class, j = 1,...,c; and for every classifier, i = 1,...,L, the 
following belief degrees: 
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The final support degrees are given by 
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where K is a normalizing constant to keep the output in 
the [0-1] interval. 



4. Evaluation 
 

The performance of the classifiers and combiners 
were evaluated by the Error Estimated by the Cross-
Validation technique, in which we took N pre-labeled 
samples, choose an integer K and randomly divide the 
N samples into K subsets of  size N/K. Then we could 
use one subset to test the performance of a classifier 
trained on the union of the remaining K-1 subsets. This 
procedure was repeated K times, choosing a different 
subset for testing each time [11]. In this paper we used 
N=480 and K=48, so each subset had 10 samples. 

Cross-Validation has high computational costs, 
specially because we are dealing with the Multilayer 
Perceptron (slow training) and classifier combination 
tasks (multiples classifiers to be trained), so it was 
avoided in previous works [4][5], in which the much 
faster hold-out technique was applied. In this paper we 
used Cross-Validation, training a total of more than 22 
thousands classifiers, so we can expect these results to 
be more accurate than previous ones using the hold-out 
technique. 
 
5. Experiments 
 

In order to test the classifiers, we have taken 80 
samples in 10x8 pixels windows (like illustrated in 
Figure 3) from each of the 6 classes (water, aluminum, 
phosphorus, calcium, plexiglass and background) in a 
total of 480 samples. From this set, we separated 48 
subsets with 10 samples each, following the Cross-
Validation technique, so we could use each of these 
subsets to test the performance of a classifier trained 
with the remaining 47 subsets. This procedure was 
repeated 47 times in order to test every selected 
sample. We used the four available bands, so we have 
4 features, which also means that the input layer of our 
networks have 4 nodes. 

The MLP networks we trained had from 2 to 10 
units in one single hidden layer. These numbers were 
selected because there is no foolproof way to tell a 
priori how many units in the hidden layer would be the 
best choice [12]. The Nguyen-Widrow [13] 
initialization algorithm was used to setup the 
parameters in the MLP networks. Adaptive learning 
rates were used with 0.01 as the initial value for 
learning rate, 1.05 as the multiplier for increasing 
learning rate, 0.7 as the multiplier for decreasing 
learning rate, 0.95 as the momentum constant and 1.04 
as the error ratio. 
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Figure 3. Pixel windows selected as samples in 
each image 

 
The experiments using classifier combination were 

also evaluated using Cross-Validation techniques and 
the same number of subsets, so for each of the 48 
subsets ten different classifiers were trained and 
combined as follows. 

In the experiments using the Bagging technique we 
replaced the combination using majority voting rule by 
the mean rule, so we could take advantage of the 
continuous-valued output (soft labels) provided by our 
neural network-based classifiers. We combined 10 
base classifiers with different bootstrap training 
samples and different initialization parameters.  

In the experiments with the Decision Templates and 
Dempster-Shafer combiners we used the Euclidean 
distance to measure similarity. All the experiments 
with DT and DS trained 10 base classifiers for the 
combination with different initialization parameters.  

After experimenting Bagging, DT and DS 
combiners, we decided to mix these techniques, in 
order to test if we could achieve any improvement. So, 
we repeated the experiments with MLP using Bagging 
technique again, but with the Decision Templates 
(BAGDT) and Dempster-Shafer (BAGDS) as the 
combiners, instead of the simple mean rule. 

The results can be viewed in Table 1 and Figure 4. 
They show the error estimated for a single classifier 
and each combination scheme for each MLP 
configuration of units in the hidden layer. The best 
results in each column are in boldface and the best 
results in each line are in italics. 

 



Table 1. Estimated Error for each combination 
scheme with different number of MLP units in the 

hidden layer 

Units Single Bagging DT DS BAGDT BAGDS

2 0.6417 0.4812 0.0271 0.0521 0.0292 0.0542 

3 0.2812 0.0208 0.0167 0.0188 0.0208 0.0292 

4 0.1542 0.0208 0.0146 0.0146 0.0229 0.0188 

5 0.0438 0.0167 0.0125 0.0125 0.0167 0.0208 

6 0.0750 0.0146 0.0167 0.0125 0.0146 0.0188 

7 0.0646 0.0167 0.0146 0.0167 0.0167 0.0188 

8 0.0521 0.0188 0.0167 0.0167 0.0146 0.0188 

9 0.0375 0.0188 0.0167 0.0167 0.0146 0.0208 

10 0.0292 0.0188 0.0167 0.0167 0.0188 0.0188 

Mean 0.1533 0.0697 0.0169 0.0197 0.0188 0.0243 

 
 

 
Figure 4. Estimated Error for each combination 

scheme with different number of MLP units in the 
hidden layer 

 
 
6. Conclusions 
 

In the experiments with the MLP single classifier 
we noticed that the results got better as we added units 
to the hidden layer. Also we have really bad results 
using only 2 or 3 units, and that is probably due to the 
unstable nature of the MLP and its lack of ability to 
escape from local minima depending on its 
initialization parameters. The use of classifier 
combiners overcomes this problem, because with ten 

different classifiers (and ten different initializations) 
chances are that some of them will reach the global 
minima. That is easy to perceive by analyzing the 
results with the combiners where the best results were 
achieved using fewer units in the hidden layer.  

We can also realize that Decision Templates 
combiners showed good results no matter how many 
units there were in the hidden layer. The reason for this 
behavior is likely to be that decision templates are 
constructed based on the most common output of the 
classifiers for the training samples from each class, no 
matter if they are giving the right label for those 
samples or not. For example, if a single classifier 
always misclassifies samples of Aluminum as being 
Water, DT technique will still take advantage of it. In 
fact, if only one of the ten base classifiers performs a 
good classification, DT will probably perform a good 
combination. Even if we have only average classifiers, 
DT still can perform combination. So we can conclude 
that DT should be a good choice of combiner when it 
is hard to find the parameters to train a classifier that 
escapes from local minima or when it is not viable to 
conduct experiments to find out which is the optimal 
number of units in the hidden layer for a particular 
problem.  

The techniques including the Bagging method 
(BAGDT and BAGDS) seem to perform slightly worse 
than DT or DS alone. Bagging takes advantage of 
unstable classifiers where minor changes in the 
training samples lead to major changes in the 
classification. But MLP classifiers are unstable by 
themselves, which means changing only the 
initialization of the parameters is enough to produce 
entirely different classifications. So it seems that the 
extra “disorder” placed by the bagging technique is 
unnecessary and does not improve the combination of 
MLP classifiers, at least in this particular case. 

New advances in this field could be reached with 
use of mechanisms to eliminate redundant classifiers, 
constraint weak classifiers and adaptive combination. 
A contextual approach for the classifier combination 
methods is also another good research way. 

In general, the results show that using Neural 
Network based classifiers, particularly the MLP, to 
identify materials on CT images is viable even in 
images with high noise levels. The use of classifiers 
combiners led to better classification and more stable 
MLP systems, minimizing the effects of bad choices of 
initialization parameters or configuration (mainly the 
number of units in the hidden layer) and the unstable 
nature of the individual MLP classifiers. 
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