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Abstract

Implicit surface reconstruction from unorganized point
sets has been recently approached with methods based on
multi-level partition of unity. We improve this approach by
addressing local approximation robustness and iso-surface
extraction issues. Our method relies on the JA1 triangu-
lation to perform both the spatial subdivision and the iso-
surface extraction. We also make use of orthogonal poly-
nomials to provide adaptive local approximations in which
the degree of the polynomial can be adjusted to accurately
reconstruct the surface locally. Finally, we compare our re-
sults with previous work to demonstrate the robustness of
our method.

1 Introduction

Lately, the research on surface reconstruction from un-
organized point sets has focused on methods based on im-
plicit functions. Among them, methods based on partition
of unity have been recently used due to their nice proper-
ties concerning processing time, reconstruction quality and
capacity to deal with massive data sets [23, 21]. Basically,
these methods consist in determining a domain subdivision
for which local functions are computed and combined to
define a continuous global implicit approximation for the
point set.

In this work, we tackle important issues from previous
methods based on partition of unity namely, the lack of ro-
bustness of the local approximations and the presence of
spurious sheets and surface artifacts in the reconstructed
model. In addition, we achieve adaptiveness not only by
subdividing the domain, but also by employing local poly-
nomial approximations whose degree can be recursively in-
creased thanks to the use of orthogonal polynomials in two
variables. Our method also attempts to profit from informa-
tion gathered during the function approximation, regarding
the features of the object, in order to condition an adaptive
polygonization scheme by using an appropriate data struc-

Figure 1. Stanford Lucy (16M Points) recon-
structed with the proposed method.



ture suited for both phases. An example of a surface recon-
structed with our method is depicted in Figure 1.

1.1 Related work

Implicit surface reconstruction. Hoppe et al. [13] pro-
posed a method to reconstruct surfaces from point clouds
using local approximations, which motivated many other
works. The method is based upon planar approximations
and it does not ensure continuity of the function.

Multi-level partition of unity implicits were proposed by
Ohtake et al. [23]. To define the supports of the partition
of unity, the domain is decomposed using an octree. The
reconstructed surface mesh is then obtained from a regular
grid (resampled from the octree) using Bloomenthal’s poly-
gonizer [5]. Mederos et al. [21] also present an approach
based on partition of unity that uses the gradient one fit-
ting method to avoid discontinuities and to reduce the sen-
sitivity of the approach to small perturbations. However,
this method must solve systems of equations with matri-
ces for which maximal rank cannot be ensured or are ill-
conditioned. Thus, expensive techniques, specifically ridge
regression, are used to improve stability. A similar function
estimation approach was presented by Lage et al. [17] to
approximate vector fields.

Approaches based on radial basis functions have been
proposed [6, 24] and are based on solving one large, dense
and ill-conditioned linear system (if ideal radial basis func-
tions are required). Contrarily, methods based on moving
least-squares [1, 2, 16] produce local approximations by
solving a large amount of small systems of equations to
fully approximate the surface. The main drawback of these
methods is the narrowness of the surface domain [2]. More
recently, Kazhdan et al. [14] proposed an interesting ap-
proach in which the surface approximation is formulated
as a Poisson problem. This method presents several ad-
vantages over other formulations, but its processing time is
higher than the one needed by partition of unity and mov-
ing least-squares formulations. Also, such method does not
achieve topological control.
Iso-surface extraction. Since the introduction of the clas-
sic marching cubes algorithm [20], several works have ad-
dressed issues concerning quality and topological properties
of the meshes generated by means of regular cuberille grids.
It is a fact that the classic marching cubes suffers from am-
biguities in its lookup table and, hence, may generate topo-
logically incorrect meshes. This issue has been approached
by the extension of marching cubes cases [22, 9, 18], by
the use of tetrahedral elements as basic domain subdivision
elements [26, 8, 28] or by a combination of cubic and tetra-
hedral cells [5].

Concerning the quality of the generated triangles, the
work by Figueiredo et al. [10] employs a physically based
approach to obtain high quality triangles. Also, an advanc-

ing front algorithm was proposed recently for creating iso-
surfaces from regular and irregular volumetric datasets [27].

The marching cubes algorithm is also not able to repre-
sent sharp features (edges or vertices) which are not aligned
with the regular grid, therefore, Kobbelt et al. [15] proposed
a modified marching cubes that calculates points inside the
cube in order to better adjust the surface to sharp features.

Another desirable feature in a polygonizer is adaptive-
ness, in that surfaces can present both high and low-
curvature regions which require different resolutions for a
good approximation. One of the earliest works that deal
with this issue uses recursive subdivision of tetrahedra [12].
Recently, Paiva et al. [25] employed octree subdivision in an
adaptive triangulation algorithm whereas Castelo et al [7]
defined an adaptive triangulation, named J A1 , for the same
purpose. One of the main features presented by J A1 is its
capacity to be extended to any dimensions due to its well-
defined algebraically description.

1.2 Main contributions

We propose a surface reconstruction method by effec-
tively combining the JA1 triangulation with an adaptive con-
struction of local polynomial approximations by means of
multivariate orthogonal polynomials [4, 3]. This allows us
to increase the degree of the polynomial at locations where
higher-degree polynomials are needed to obtain a good ap-
proximation to the surface. Following, we present some
contributions of our work:
Adaptive implicit surface reconstruction with topologi-
cal guarantees: contrary to previous methods, we extract
the iso-surface directly from the data structure used to sub-
divide the space; namely, the JA1 . This enables the adaptive
surface extraction to take advantage of refinement informa-
tion obtained during function approximation. Furthermore,
as JA1 is composed of tetrahedra, the surface extraction al-
gorithm guarantees topologically coherent surfaces.
Numerical stability: in general, least-squares formulations
solved by normal equations using canonical polynomials
lead to ill-conditioned systems of equations. By using a ba-
sis of orthogonal polynomials we avoid solving systems of
equations and improve stability without requiring expensive
computations in opposition to other methods such as QR de-
composition with Householder factorization, singular value
decomposition or pre-conditioned conjugate gradient.
Adaptive local function approximation: the use of or-
thogonal polynomials allows us to efficiently increase the
degree of the local polynomial approximation due to the re-
cursive nature of their construction. For that reason, our
method is also adaptive with respect to local fittings.
Avoiding spurious surface sheets: contrary to previous
work on multi-level partition of unity implicits, our method
is able to avoid generating spurious surface sheets and sur-
face artifacts. This is achieved by using some tests that dis-



card approximations considered non-robust, i.e., approxi-
mations which oscillate within the local support.

2 Background
In this section we describe the multi-level partition of

unity implicits in order to set the basis to present our
method. We also describe the JA1 data structure to better
explain its properties used to define our adaptive partition
of unity implicits.

2.1 Multi-level partition of unity implicits

Partition of unity implicits are defined on a finite domain
Ω as a global approximation F obtained with a linear sum
of local approximations. As with other implicit surface ap-
proximation methods, the surface is defined as the zero set
of F . For this purpose, a set of non-negative compactly
supported weight functions Φ = {φ1, . . . , φn}, where∑n
i=0 φi(x) ≡ 1, x ∈ Ω, and a set F = {f1, . . . , fn}

of local signed distance functions fi must be defined on Ω.
Given the set F and Φ, the function F : R

3 → R is defined
as:

F(x) ≡
n∑
i=0

fi(x)φi(x), x ∈ Ω. (1)

A set of nonnegative compact support functions can pro-
duce the partition of unity functions as

φi(x) =
θi(x)∑n
k=1 θk(x)

,

where θi is a compactly supported weight function. Figure 2
depicts a two dimensional example: the domain Ω is cov-
ered by a set of circles – supports– and, for each one, a func-
tion fi and a weight function φi are defined. Otahke et al.
subdivide the domain using an octree and define a spherical
support for each cube. The functions f i : R

3 → R at each
local support are computed using the set of points by ini-
tially defining a local coordinate system (ξ, η, ν) at the cen-
ter of the support, where (ξ, η) define the local plane (do-
main), and ν coincides with the orthogonal direction (im-
age). Hence, fi is defined as fi(x) = w − gi(u, v), where
(u, v, w) is x in the (ξ, η, ν) basis. The function gi is ob-
tained by the two-dimensional least-squares method. Note
that this method requires points equipped consistently with
oriented normal vectors.

2.2 The JA1 triangulation

The JA1 triangulation [7] is an algebraically defined
structure that can be constructed in any dimension and is
able to handle refinements to accommodate local features.
Among JA1 ’s advantages, we can highlight the mechanism
for representing simplices and the existence of algebraically
rules for traversing the triangulation which prevents storing
connectivity and, therefore, enables efficient storage.

Figure 2. The behavior of the JA1 concerning
the refinements induced by the error criterion
and by JA1 restrictions.

Basically, the JA1 triangulation consists of a grid in
which the basic unit in R

n is a n-dimensional hypercube,
which we will refer to as block. These units are divided into
2nn! n-simplices that can be described algebraically using
six values S = (g, r, π, s, t, h). The first two elements of
S define in which block the simplex is contained. The n-
dimensional vector g locates a particular block in a particu-
lar refinement level r. Figure 3 illustrates, on the left, a two-
dimensional JA1 grid and, on the right, a highlighted block
of refinement level r = 0 (0-block) and g = (3, 1). Also
in Figure 3, one can notice that dark gray blocks present re-
finement level r = 1 – thus are called 1-blocks – and, for
that reason, are part of a higher resolution grid.

Once a block can be located in the grid, there must be
a way to specify which simplex we are referring to. How-
ever, before doing so, it is necessary to observe that J A1
handles refinements – in R

n – by splitting one block into
2n blocks and applying local changes on the grid in order to
accommodate newly created blocks. This accommodation
process originates a different kind of block: the transition
block. The JA1 triangulation prohibits situations in which
neighboring blocks present a bigger than one difference in
their refinement levels by propagating refinements. It also
imposes that, whenever there are neighbor blocks whose re-
finement levels differ by one, the one possessing smaller r
is transformed into a transition block.

A transition block is a block that possesses only some of
its k-dimensional faces (0 < k < n) refined. This is better
illustrated by Figure 3 in which basic 0-blocks are colored
white, basic 1-blocks are colored dark-grey and transition
blocks are colored light-grey. In particular, the highlighted
transition block has only its upper edge refined. To maintain
notation coherence, non-transition blocks will be referred to
as basic blocks from now on.
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Figure 3. An example of a 2D JA1 triangulation
(left) and the detail of block g = (3, 1), r = 0
and two paths for tracing simplices (right).

The representation of all simplices inside a block is
based upon the fact that all of them share at least one vertex:
v0. Starting in v0, which is the center of a n-dimensional
hypercube, the next step is taken in the positive or nega-
tive direction of one chosen coordinate axis. This will pro-
duce v1 as the center of a (n − 1)-dimension face and, as
the process goes on, the vertices v2 . . . vn will be defined
as the center of (n − 2), . . . , 0 dimensional faces respec-
tively. In other words, simplices can be represented by the
path traversed from v0 to vn which is coded by π and s.
The π vector stores a permutation of n integers from 1 to n
representing coordinate axes, while s represents the direc-
tion – positive or negative – that must be followed in each
axis. For instance, in Figure 3, simplex 1 is represented by
π = (1, 2) and s = (1,−1), which means that first we go
through axis π1 = 1 (x, in the figure) in direction sπ1 = 1
and then through axis π2 = 2 (y, in the figure) in direction
sπ2 = −1.

In the case of simplices inside basic blocks and simplices
inside transition blocks that do not reach any refined face,
the information provided by π and s is enough. However,
in the remaining cases, further information must be taken
into account, because when a refined k-dimensional face is
reached, there is not only one center, but 2k centers. For this
reason, the scalar h is defined to inform how many steps are
taken before a refined face is reached, while vector t de-
fines extra signs for axis πh+1 . . . πn that are used for se-
lecting one center from all possibilities. For instance, in
Figure 3, simplex 2 is represented by π = (1, 0), s = (1, 1),
h = 1 and t = (−1, 0) because only one step is taken before
reaching a refined edge and the chosen center for placing v 1

is in the negative direction of πh+1. The following expres-
sions formally describe how to compose a simplex inside
a hypercube centered at the origin (0, . . . , 0) with edges of

length 2:⎧⎪⎪⎨
⎪⎪⎩

v0 = (0, . . . , 0)
vi = vi−1 + eπisπi , for 1 ≤ i < h
vh = vh−1 + eπh

sπh
+ 1

2

∑n
k=h+1 eπk

tπk

vi = vi−1 + 1
2eπisπi , for h < i ≤ n

, (2)

where ei is a vector with value 1 in position i and 0 in the
remaining positions.

Besides describing simplices algebraically, the JA1 tri-
angulation also defines pivoting rules for traversing the tri-
angulation without using any other topological data struc-
ture. Figure 3 illustrates two pivoting operations in which
simplices 1 and 2 are pivoted in relation to vertices v1 and
v2 respectively, generating simplices 3 and 4. All pivoting
rules can be found in the work by Castelo et al. [7].

3 Robust adaptive partition of unity implicits
Traditionally, an adaptive partition of unity implicit is

built using an octree to partition the space and calculate lo-
cal approximations that are subsequently combined using
weights. The more details the object possesses, the more
refined the octree must be. Thus, the octree can be used to
identify complicated or soft features on the surface. Hence,
our goal was to use this information acquired during func-
tion approximation to obtain an adaptive polygonization.
Therefore, as JA1 has an underlying restricted octree as
its backbone, we adaptated the triangulation to serve both
approximation and polygonization purposes. The achieved
adaptiveness allows capturing fine details without using re-
fined grids. Another important feature of our method is the
increased quality of the local approximations compared to
previous methods, which prevents spurious sheets and sur-
face artifacts.

3.1 Our method at a glance
The method works in two phases: the first generates the

implicit function and the second the polygonization.
To generate the implicit function, we start by subdivid-

ing the domain using the JA1 triangulation. Given a block
in the JA1 , a local approximation is generated to fit the data
inside a support radius surrounding this block. If the error
criterion is not met, the block is refined by subdividing it
into eight new blocks and, consequently, new approxima-
tions are calculated for each one of them. This process is
repeated until all blocks satisfy some error and robustness
conditions or the maximal pre-defined depth is reached. In
the latter case the approximation is used anyway.

After the approximation process is completed, we have
the JA1 subdivision of the domain, and therefore the sup-
ports and the local approximations for each support. Hence,
the implicit function can be evaluated and the iso-surface
extraction is performed by simply visiting all transversal
simplices by means of pivoting rules and generating the tri-
angular mesh.



3.2 Local approximations
We compute a local approximation at each support by

means of a polynomial fitting using least-squares. However,
instead of using a canonical basis {uivj : i, j ∈ N}, we opt
for a basis of orthogonal polynomials with respect to the
inner product induced by the normal equation. This way,
we do not need to solve any system of equations, avoiding
ill-conditioned matrices. To find this basis of orthogonal
polynomials we use the method by Bartels and Jezioran-
ski [4, 3]. The authors argue that the computation is faster
and more stable than using numerical methods to solve the
systems of equations.

Given a set of orthogonal polynomials Ψ =
{ψ1, . . . , ψl}, we can compute the polynomial in local co-
ordinates as

gi(u, v) =
∑
ψj∈Ψ

ψl(u, v)
∑m

i=1 wiψj(ui, vi)∑m
i=1 ψj(ui, vi)ψj(ui, vi)

, (3)

where gi is the function g that minimizes

min
g

∑
(ui,vi)

(g(ui, vi) − wi))2. (4)

An important advantage of using orthogonal polynomi-
als is the ability to generate higher-degree approximations
from previously computed low-degree approximations with
low additional computational effort. This motivated us to
use orthogonal polynomials to define a method that is adap-
tive both in the spatial subdivision and in the local approxi-
mation.

To explain the approximation algorithm we can take an
arbitrary block to be processed, for which the support is
defined as its circumsphere enlarged by a factor larger than
one (in our implementation we use 1.5). The approximation
process starts by finding all points inside the support of the
block. At this point, we face three different situations: (i)
the number of points in the support is enough to calculate
the approximation properly; (ii) the number of points is not
enough ; (iii) there are too many points in the support.

In case (i), we approximate the point set by a least-
squares plane defined in a local coordinate system. If the
error criterion is not satisfied, but there are enough points to
perform a higher degree least-squares, we recursively com-
pute a polynomial of one degree greater than the current
and recompute the error. This process is repeated until the
error criterion is met, until there are not enough points to
increase the degree of the polynomial, until a covering cri-
terion (explained below) is not met or until a maximal de-
gree is reached (degree four in our implementation). In the
first case, the approximation is stored in the block and the
process stops, otherwise subdivision is performed unless the
block possesses a critical amount of points (in our case, we
test blocks with fewer than 100). In this situation, we test

whether possible new approximation blocks would increase
the error instead of decreasing it due to the fact that high
degree approximations could not be achieved for them. If
they do increase, the subdivision of the block is aborted.

The error criterion is trivial and consists in checking
if the relative average least-squares error is larger than a
user-specified threshold. The covering test is more com-
plex and is based upon the fact that when dealing with high
degree polynomials, a special care must be taken to avoid
blocks with functions that, even though presenting small
least-square error, are actually bad approximations inside
the support radius. For instance, in Figure 4, although point
p lies inside the support, the function does not offer a good
approximation on it. This problem occurs because high de-
gree polynomials are able to approximate point data nicely
in-between points, however, they can also significantly os-
cillate at locations with no points to restrict the approxi-
mation, as illustrated on left side of Figure 4. This fact
means that, depending on how points are distributed inside
the support, the associated approximations may lead to ar-
tifacts and spurious sheets; therefore, the problem may be
reduced to determining when a particular point distribution
does not guarantee robustness. To analyze this question, we
must take into account the fact that our approximations are
calculated and evaluated in a local coordinate system and,
hence, our domain is actually on a plane. Thus, we have
to determine for which area of this plane the approxima-
tion must be robust, named support domain (Ar), and for
which area the approximation can be robust, named cover-
age domain (Ac). The former is obtained by projecting the
spherical support on the plane whereas the latter is obtained
by projecting the local points’ bounding box on the plane.
Our criterion simply consists in calculating the covering ra-
tio k = Ac/Ar (k lies between 0 and 4/π) and checking
if k is enough for a given polynomial degree; i.e., if it sur-
passes a specified threshold. In our implementation we use
0.00, 0.85, 0.90 and 0.95 for polynomials with degree 1, 2,
3 and 4 respectively due to the fact that high degree polyno-
mials tend to have a more oscillating behavior outside the
coverage domain and thus require a tighter ratio. Figure 4,
on the right, represents a two-dimensional case in which the
coverage domain is not enough to guarantee a good approx-
imation.

Approximation case (ii) is handled in a different way
than previous methods in order to achieve greater robust-
ness. Instead of iteratively growing the coverage vol-
ume of the block until the minimal number of points is
reached [23], which may cause a local approximation to
influence a large part of the domain, or using the approx-
imation of the parent of the block [21], which could be a
poor approximation, we address this case by observing that
approximations in blocks that do not contain points must
be only good enough to avoid or reduce undesirable arti-



Figure 4. The coverage domain (shown in
dashed blue line) is too small compared to
the support domain (shown in solid red line).

facts. The solution consists in finding the nearest sample
point r to the center of the block, querying a small num-
ber of neighbors of r (in our implementation we used 23
points) and approximating a least-square plane. An issue
about least-squares planes is that, for some point distribu-
tions, the plane can be orthogonal in relation to what we
were expecting [2]. Therefore, we detect this situation, by
comparing the calculated plane normal to the mean of the
normals of the neighbors of r. If the normals differ by an
angle greater than π/6, we discard the least-squares approx-
imation and use the plane with normal equal to the mean of
the normal vectors of the neighbors and origin equal to the
mean of the positions of the neighbors.

Finally, case (iii) can be thought of as an heuristic em-
ployed to avoid useless and expensive calculations. In our
case, we consider fitting polynomials to more than 1000
points an unnecessary effort; therefore, we force subdivi-
sion of the block. If the subdivision is not possible, due to
maximal refinement level, the approximation is computed
in the current block with the large number of points.

Before concluding this section, it is important to clarify
the difference between block splitting caused by approxi-
mation conditions and those triggered by J A1 restrictions
(explained in Section 2.2). In the latter case, new approx-
imations are not computed because the approximation for
the block being refined could be already good. Figure 2
illustrates a case in which not all leaf nodes possess approx-
imations associated to them. In the figure, light dashed cir-
cles represent supports associated to leaf nodes containing
approximations whereas dark dashed circles correspond to
supports associated to non-leaf nodes which were only sub-
divided due to JA1 restrictions.

3.3 Function evaluation and polygoniza-
tion

The function evaluation process consists in determining
which blocks affect, with their supports, a particular point
x and obtaining the value of F(x) as a combination of all

local functions:

F(x) =
∑N

i=1 fi(x)θi(‖x − ci‖/Ri)∑N
i=1 θi(‖x− ci‖/Ri)

,

where θi is a cubic spline [19], N is the number of blocks
that affect x, and fi(x), ci andRi are the local signed func-
tions, center and radius of the block i respectively.

The problem of finding which blocks affect a particu-
lar point consists in an JA1 octree-like traversal that prunes
blocks whose influence volume does not encapsulate x.

The surface polygonization from the implicit function is
performed using the JA1 defined in the approximation step.
The algorithm starts by finding an initial simplex, which is
straightforward because we can determine which simplex
contains a particular input point, and then by traversing all
transversal simplices using pivoting rules while generating
the surface mesh.

4 Results and discussion
An interesting feature about our method, presented in

Figure 5, is the double adaptiveness achieved by levels of
refinement and degrees of polynomials. On the left, we
can notice that greater refinement levels are found in more
complicated regions of the model, for instance, the legs and
the head. On the right, we have the distribution of polyno-
mial degrees along the model and it is clear that high de-
gree polynomials are employed to represent big areas with
low refinement level, i.e., the refinement was avoided due
to the approximation power presented by these functions.
In the legs of the ant, we can verify the presence of many
planes which was mostly due to the fact that higher degree
polynomials could not meet the robustness criterion in that
particular region, therefore, refinements were made and low
degree approximations were used.

Figure 5. The EtiAnt Model [11]. On the left,
the color shows the degree of refinement
whereas, on the right, it shows the degree of
the polynomial used.

One of the main issues we approached in this work was
the robustness of the generated models. In Figure 6, we
compared our method with Ohtake’s by using similar con-
figuration parameters and we can notice that our method



was able to generate more robust approximations. In this
model [11], we also observed, in preliminary testing, that
without our robustness criterion, even second degree poly-
nomials could generate spurious sheets and artifacts. It is
important to mention that, due to the fact that we do not
implement any special treatment for representing sharp fea-
tures, Ohtake’s method presents better defined sharp edges
for this model.

Figure 6. Comparison between Ohtake’s
method (on the left) and ours (on the right)
using the Witchhat model (25K points). De-
tails of the mesh can be seen in the zoom-in.

Regarding the generated mesh, the adaptiveness of our
mesh can be verified in the zoom-in window in Figure 6.
Also, due to our underlying tetrahedral mesh, the recon-
structed surface is topologically correct, even though a di-
rect counterpart of tetrahedron-based polygonizers is the
presence of poor-quality triangles.

We tested our method in a Athlon X2 2.2Ghz with 3
GB RAM and we were able to generate a good approxima-
tion for the 398K points Dragon model in 299.3s. For the
same model, it took 374.8s to evaluate 1,000,000 points,
which is equivalent to the number of evaluations required
for polygonizing completely a regular grid of resolution
100 × 100 × 100. We acknowledge that our method is still
computationally less efficient than Ohtake’s, even though
our least-squares using orthogonal polynomials is faster
than the one based on a canonical basis. That can be ex-
plained by the fact that our method reconstructs the function
for the whole domain, whereas Ohtake’s builds approxima-
tions only around the surface because its polygonization is
performed for one connected component and local approxi-
mations are calculated only when needed. This fact may be
seen as a disadvantage, but actually our method provides a
more robust approximation for the complete domain, which
means we can perform implicit function modeling opera-
tions without generating unexpected results, such as spuri-

ous sheets or artifacts. In addition, we believe that we may
be able to enhance the efficiency of our method by optimiz-
ing the spatial queries by combining it with the subdivision
performed over the domain.

Finally, in Figure 7 we present some models recon-
structed by our method.

5 Conclusion
In this work we presented an adaptive multi-level parti-

tion of unity implicit scheme which employs the J A1 trian-
gulation not only for partitioning the domain, but also for
polygonizing the surface. In addition, we introduced the
use of multi-variate orthogonal polynomials to define local
surface fittings as well as some heuristics to achieve robust
approximations. Although our processing time for evaluat-
ing the function is currently higher than previous work, the
presented results show that we are able to achieve a good
level of robustness and, therefore, promising reconstruction
quality.

As future work, besides improving our implementation,
we intend to thoroughly study the domain of partition of
unity methods as it was already done by Kil and Amenta [2]
for the domain of Point Set Surfaces. Finally, we can notice
that the quality of the meshes produced by the J A1 polygo-
nizer is not very attractive, therefore it is also important to
address this issue and provide a post-processing step or an
iso-surface extraction method capable of producing higher
quality meshes based on the JA1 .

Acknowledgments
This work was partially supported by DAAD, with

grant number A/04/08711, by FAPESP, with grant num-
bers 04/10947-6, 06/54477-9 and 05/57735-6 and by
Capes/DAAD, with grant number 262/07.

References
[1] A. Adamson and M. Alexa. Approximating and intersect-

ing surfaces from points. In Proc. of Eurographics/ACM
Symposium on Geometry Processing, pages 230–239. Euro-
graphics Assoc., 2003.

[2] N. Amenta and Y. J. Kil. The domain of a point set sur-
faces. Eurographics Symposium on Point-based Graphics,
1(1):139–147, June 2004.

[3] R. H. Bartels and J. J. Jezioranski. Algorithm 634: Constr
and eval: routines for fitting multinomials in a least-squares
sense. ACM Trans. Math. Softw., 11(3):218–228, 1985.

[4] R. H. Bartels and J. J. Jezioranski. Least-squares fitting us-
ing orthogonal multinomials. ACM Transactions on Mathe-
matical Software, 11(3):201–217, 1985.

[5] J. Bloomenthal. An implicit surface polygonizer. In P. Heck-
bert, editor, Graphics Gems IV, pages 324–349. Academic
Press, Boston, 1994.

[6] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3d objects with radial basis functions.
In SIGGRAPH ’01, pages 67–76, 2001.



Figure 7. Reconstructed models. From left to right: Stanford Bunny (34K points), Stanford Dragon
(398K points), EtiAnt (261K points), Stanford Armadillo Man (172K points).

[7] A. Castelo, L. G. Nonato, M. Siqueira, R. Minghim, and
G. Tavares. The j1a triangulation: An adaptive triangulation
in any dimension. Computer & Graphics, 30(5):737–753,
2006.

[8] S. L. Chan and E. O. Purisima. A new tetrahedral tesselation
scheme for isosurface generation. Computer & Graphics,
22(1):83–90, 1998.

[9] E. V. Chernyaev. Marching cubes 33: construction of topo-
logically correct isosurfaces. Technical report, CERN, 1995.

[10] L. H. de Figueiredo, J. M. Gomes, D. Terzopoulos, and
L. Velho. Physically-based methods for polygonization of
implicit surfaces. In Proc. of the conference on Graphics
interface ’92, pages 250–257, 1992.

[11] J. P. Gois. http://www.lcad.icmc.usp.br/∼gois/models.
july/2007.

[12] M. Hall and J. Warren. Adaptive polygonalization of implic-
itly defined surfaces. Computer Graphics and Applications,
IEEE, 10(6):33–42, Nov. 1990.

[13] H. Hoppe, T. DeRose, T. Duchampy, J. McDonaldz, and
W. Stuetzlez. Surface reconstruction from unorganized
points. Computer Graphics, 26(2):71–78, 1992.

[14] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. In Proceedings of Eurographics Symposium
on Geometry Processing, 2006.

[15] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel.
Feature sensitive surface extraction from volume data. In
SIGGRAPH ’01, pages 57–66, USA, 2001. ACM Press.

[16] R. Kolluri. Provably good moving least squares. In SODA
’05: Proc. of the 16th annual ACM-SIAM symposium on
Discrete algorithms, pages 1008–1017, 2005.

[17] M. Lage, F. Petronetto, A. Paiva, H. Lopes, T. Lewiner, and
G. Tavares. Vector field reconstruction from sparse samples
with applications. In SIBGRAPI, pages 297–306, Brazil,
2006. IEEE CS.

[18] T. Lewiner, H. Lopes, A. W. Viera, and G. Tavaresi. Effi-
cient implement of marching cubes cases with topological
guarantees. Journal of Graphics Tools., 8(2):1–15, 2003.

[19] G. R. Liu and M. B. Liu. Smoothed Particle Hydrodynamics.
World Scientific, 2003.

[20] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In SIGGRAPH
’87, pages 163–169. ACM Press, 1987.

[21] B. Mederos, S. Arouca, M. Lage, H. Lopes, and L. Velho.
Improved partition of unity implicit surface reconstruction.
Technical Report TR-0406, IMPA, Brazil, 2006.

[22] C. Montani, R. Scateni, and R. Scopigno. A modified look-
up table for implicit disambiguation of marching cubes. The
Visual Computer, 10(6):353–355, December 1994.

[23] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel.
Multi-level partition of unity implicits. ACM Trans. Graph.,
22(3):463–470, 2003.

[24] Y. Ohtake, A. Belyaev, and H.-P. Seidel. 3d scattered data
interpolation and approximation with multilevel compactly
supported RBFs. Graphical Models, 67(3):150–165, 2004.

[25] A. Paiva, H. Lopes, T. Lewiner, and L. H. de Figueiredo. Ro-
bust adaptive meshes for implicit surfaces. In Proceedings
of SIBGRAPI, 2006.

[26] P. A. Payne and A. W. Toga. Surface mapping brain function
on 3d models. IEEE Computer Graphics and Applications,
10(5):33–41, 1990.

[27] J. Schreiner, C. Scheidegger, and C. Silva. High-quality
extraction of isosurfaces from regular and irregular grids.
IEEE Transactions on Visualization and Computer Graph-
ics, 12(5):1205–1212, 2006.

[28] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised
marching tetrahedra: improved iso-surface extraction. Com-
puter & Graphics, 23(4):583–598, 1999.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


