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Abstract

Traditional mesh segmentation methods normally oper-
ate on geometrical models with no image information. On
the other hand, 2D image-based mesh generation and seg-
mentation counterparts, such as Imesh [6] perform the task
by following a set of well defined rules derived from the ge-
ometry of the triangles, but with no statistical information
of the mesh elements.

This paper presents a novel segmentation method that
combines the original Imesh image-based segmentation ap-
proach with Markovian Random Field (MRF) models. It
takes an image as input, generate a mesh of triangles and,
by treating the mesh as a Markovian field, produces quality
unsupervised segmentation.

The results have demonstrated that the method not only
provides better segmentation than that of original Imesh,
but is also capable of producing MRF-like segmentation
output for certain types of images, with considerable cut
in processing times.

1 Introduction

Image segmentation by Markovian Random Field
(MRF) models is an expanding research field. Traditionally,
the attractiveness of the MRF approach to segmentation is
its ability to correctly model images with texture patterns
that exhibit random behaviour, providing good segmenta-
tion [13, 9]. Moreover, the process is accomplished in an
unsupervised fashion and is also capable of representing
many stochastic problem by modelling complex features
with a relatively reduced number of parameters.

Applications of MRF to segmentation may range from
remote sensing [23] to medicine [22] and are commonly
applied to 2D data. However, some results can be found
in the 3D domain. Chistopher [4] has developed a MRF
segmentation method for inherent 3D medical data, such as
Computed Tomography and Magnetic Resonance Imaging.

In the MRF approach to segmentation, an image is rep-
resented by the capture of local features, determining for
every pixel in the image its grey level dependence with re-
lation to its neighbours’ grey level. This dependence is ex-
pressed in terms of a conditional probability distribution,
computed over the intensity of each pixel. Any decom-
position that possess neighbourhood relationships of such
fashion and well established segmentation properties can be
segmented by MRF.

A typical example of such decomposition are images
represented by meshes, as neighbourhood relationships can
easily be defined for them. Furthermore, meshes can be
built so as to incorporate some specific features of the im-
age, turning segmentation an easier and faster task. Another
aspect is that images represented by meshes possess a re-
duced number of cells (when compared with that of pixel or
voxel representations), demanding a lower computational
effort in the segmentation process.

Traditionally, mesh segmentation methods operate on
geometrical models with no image information attached
[25, 14, 24]. Such methods aim to find structures of interest
in the mesh suitable for computer vision applications.

In spite of good properties of mesh representation, the
use of MRF in such decomposition has never been explored.
Another important fact not usually considered is that mesh
representation provides, as well as the traditional informa-
tion required by MRF, additional geometrical information
that can empower the MRF segmentation output. In fact,
instead of solely looking at the pixel grey level, improved
segmentation could be attained if MRF were combined with
features provided by meshes such as area, edge length, cell
aspect ratio and so on.

This paper presents a novel unsupervised 2D segmen-
tation method that combines both MRF and meshes. The
method extends the concept of MRF segmentation, tradi-
tionally focused on pixel local features and its neighbour-
hood, to a broader framework in which features extracted
from meshes are also considered in the computation of the
segmented image. The results have shown a significant im-



provement in the quality of the final segmentation when
compared with that accomplished with a set of well defined
mesh segmentation rules alone, the original Imesh. Also,
the new method exhibits much lower segmentation times in
comparison with traditional MRF segmentation methods.

This paper is organised as follows. Section 2 describes
the MRF image segmentation method. The concepts and
the decomposition process for the mesh generation are de-
scribed is section 3. The combination of both MRF and
mesh is introduced in section 4 and some results are pre-
sented in section 5. Conclusions are finally found in section
6.

2 Markovian Random Field Model to seg-
mentation

Many objects in real images are characterised by texture
of random or non deterministic behaviour. For such cases
a probabilistic approach to segmentation can be desirable.
Many works on stochastic models for images have been de-
veloped [12, 7, 13, 5] and successfully applied in different
situations [18, 1, 2, 21].

For such models, objects in a digital image are seen as a
group of pixels enclosed in a given area. The representation
of each object can be done by labelling them and construct-
ing a label field. Generally, stochastic segmentation algo-
rithms define such labels as random variables, grouped into
a so called 2D random field.

Many random field models exist [19] such as Gibbs,
Ising, Potts, Pickard and Markov. The latter, is very ad-
equate for modeling texture (especially micro–texture) for
that it defines a probability function for the field by means
of purely local features, ie, neighbouring features.

Unsupervised segmentation by stochastic models be-
longs to the family of incomplete data problems. Hence,
the segmentation task is, in the end, a problem of statistical
optimization of a given criterion. In this model the image
to be segmented is the observed data; the results sought,
normally named class map or label field, is considered the
missing data and; the set of model parameters is an item to
be computed. The implementation of such approach com-
prises a two-fold process: a) parameter estimation and b)
the statistical optimization itself.

The parameter estimation process can be accomplished
by some iterative algorithms: EM (Expectation Maximiza-
tion), SEM (Stochastic Estimation-Maximization) and ICE
(Iterative Conditional Estimation). For the statistical opti-
mization, two processes are known: MAP (Maximization
a Posterior) [7, 15] and MPM (Maximizer of the Posterior
Marginals) [16, 5], which is more appropriate to image seg-
mentation than MAP [16]. While the latter assigns the same
cost for every incorrect segmentation over the entire image,
the former assigns a cost based on the number of misclassi-

fied pixels. This work has adopted the EM/MPM approach
as proposed by Comer [5]. The approach will be briefly
described in the next section.

2.1 The EM/MPM segmentation

In the Markovian EM/MPM image segmentation
method, the observed data is the observed image, given by
Y = Y1, ...,YN and the label field X = X1, ...,XN is the miss-
ing data. X and Y are 2D random fields of a rectangular
grid S with N variables. According to Bayes’ Theorem,
the posterior probability pX|Y is proportional to
the prior probability pX times a likelihood
function fY|X. Hence,

pX|Y(x|y,θ) ∝ pX(x)× fY|X(y|x,θ), (1)

where θ is the parameter array for the model and y =
y1, ...,yn and x = x1, ...,xn are sample realizations of Y and
X, respectively. Each xs can be assigned the value of a label
k = 1, ...,L, with L being the number of labels previously
defined. On the other hand, ys are grey levels in the range
0, ...,255.

The segmentation methods seeks to find an estimate for
the label field x through the MPM optimization method,
whose minimization criterion is the expected number of
mislabelled pixels. As an unsupervised segmentation
method, the EM algorithm is then employed to estimate the
parameters θ of the model.

In the original formulation proposed by Comer and Delp
[5] for image segmentation, the probability fYs|X, ∀s ∈
{1, ...,N} is considered a normal distribution that only de-
pends on Xs. Hence,

fY|X(y|x,θ) =
N

∏
s=1

fYs|Xs,θ(ys|xs,θ)

=
N

∏
s=1

1√
2πσ2

xs

exp

(
− (ys−µxs)

2

2σ2
xs

)
.

(2)
The array of parameters θ are the means and variance

of each label, ie, θ = [µ1,σ
2
1 , ...,µL,σ2

L ]. The distribution
pX of the label field is a Markovian Random Field
[19, 8] that, according to Hammersley-Clifford’s theorem
[3, 12], has a conditional probability mass function given as
a Gibbs distribution

pX(x) =
1
Z

exp(−U(x)) , (3)

where Z is a normalisation factor and U(x) is an energy
function in the form

U(x) = ∑
c∈C

Vc(x). (4)



Vc(x) is a function that depends on the cliques and the
family {Vc : c∈C} is called potential. The set of pixels
C ⊆ S is a clique in the label field if, for any pixels r,s ∈C,
then s ∈ Gr. That is, they are all neighbours. A collection
G = {Gs ⊆ S,s ∈ S} is a neighbouring system for S if, for
any pixel in s ∈ S, then s 6∈ Gs and s ∈ Gr ⇐⇒ r ∈ Gs,∀r ∈
S. The elements of Gs are then the neighbour pixels of a
pixel s. Figure 1 shows a pixel and its 4– and 8–connected
neighbourhood, with its respective cliques.

(a) (b)

(c) (d)

Figure 1. (a) 4-connected neighbourhood and
(b) its corresponding cliques. (c) 8-connected
neighbourhood and (d) its corresponding
cliques.

For image segmentation purposes, an adequate energy
function is given by

U(x) = ∑
{r,s}∈C

β t(xr,xs)+ ∑
{r}∈C

γxr , (5)

where

t(xr,xs) =
{

0, if xr = xs,
1, if xr 6= xs.

(6)

Notice that only the double cliques (two pixels) and
single (one pixel) are taken into account in this model.
The parameter β , called Spatial Interaction
Parameter, defines a weight for the penalty function
t(xr,xs) of a double clique. This function aims to prevent
neighbour pixel from having different labels. The set of pa-
rameters γk,k = 1, ...,L, which acts upon the single cliques,
can be considered as the occurrence costs of each label k.
Since this is a unsupervised segmentation, the parameters
γk are, generally, assumed to be 0, ∀k.

3 Mesh Generation

This section shows the process of mesh generation.
Some basic definitions and terminologies are introduced,
followed by the description of the mesh computation from
an image.

3.1 Basic Concepts

Let S be a set of points in R2. A triangulation (mesh)
of S is a two-dimensional simplicial complex M whose ver-
tices are the points of S, and any k-simplex of M, k = 0,1,
is contained in at least a 2-simplex (triangle) of M. If the
union of all simplices in M makes up the convex hull of S
and the circumcircle of each triangle in M does not contain
in its interior any point of S then M is called Delaunay tri-
angulation [10].

A planar graph is a graph G with vertices in R2 where
each edge is a straight-line segment with ends in G and if
e1 and e2 are two edges of G, e1 ∩ e2 is either empty or a
vertex of G. Given a planar graph G, a mesh conformed
by G is a triangulation M where each vertex of G is in M
and if e is an edge in G then |e|= |e1∪ e2∪·· ·∪ ek|, where
ei ∈ M, i = 1, . . . ,k are edges of M and | · | represents the
underling space, i.e., each edge of G can appear subdivided
as a set of edges in M.

Let S be a set of points and M be a mesh (triangulation)
of S, if M = M1∪M2∪·· ·∪Mk, where each Mi is a triangu-
lation and Mi ∩M j, i 6= j is either empty or a planar graph
then {M1,M2, · · · ,Mk} is said a k-partitioning of M in sub-
meshes Mi, i = 1, . . . ,k.

An m×n image is a function I : [0, . . . ,m]× [0, . . . ,n]→
R+ that assigns to each point p∈ [0, . . . ,m]× [0, . . . ,n]⊂Z2

a non-negative scalar I(p). The pair (p, I(p)) is called pixel.

3.2 Image Mesh Decomposition

Image mesh decomposition concerns to the process of
generating a mesh (triangulation) that fits features contained
in the image. In our context, triangles should not be allowed
to cross different regions of the image, that is, each triangle
should be spatially contained in only one region of the im-
age.

Let T be the set of triangles of a Delaunay triangu-
lar mesh M whose vertices are points of an image I and
E : T → R+ be a function that associates an error measure
to each triangle in T . In fact, function E measures how good
a triangle is regarding a specific property, that is, E enables
to decide whether or not a triangle must belong to the trian-
gulation.

Different strategies to define the function E have been
presented in the literature, but usually such approaches rely
on evaluating E by traversing all pixels inside a triangle



t so as to decide, based on some characteristic of the im-
age, whether or not t is an appropriated triangle. In general,
when E indicates that t is a bad triangle, the triangulation is
updated by inserting new points within t, thus eliminating it
from M [11].

Although widely employed, the bad triangles removal
strategy described above presents two main drawbacks.
Traversing all pixels within a triangle may demand a high
computational cost. Each time the triangulation is updated
all the new triangles must be scanned in order to evaluate E.
Another concern is the insertion of new points in the trian-
gulation. If not handled properly, this operation can result in
an accumulation of points around already existing vertices.

To avoid the problems described above, we adopt an
strategy based on the medians of the triangles to define the
function E. By traversing medians only, one can reduce the
computational effort while being effective in detecting tri-
angles that go across different regions of the image.

Let h1,h2,h3 be the three medians of a triangle t ∈ M.
Consider the sets of points Ph j = {p ∈ h j | E (p) ≥ cE }
where E is an edge detection operator and cE is an user
defined scalar. Therefore, Ph j is the set of points where the
edges of the image intersect the median h j.

Let αi, i = 1,2,3 be the baricentric coordinates of a point
pk ∈ Ph j and A(pk) = min{αi} be a function that associates
to each pk its smallest baricentric coordinate. Let DM(pk)
be the square distance between pk and its closest vertex
in M, that is, DM(pk) = min

v j∈M
{d2(pk,v j)}, where d(·, ·) is

the Euclidean distance. ph j denotes the point of Ph j where
DM(pk) is maximal. From these definitions, the error func-
tion E can be stated as follows:

E(t) = max{A(ph j)}, j = 1,2,3 (7)

Figure 2(b) gives a geometric interpretation of the func-
tion E. The baricentric coordinates of a point pk is related
with the areas of the triangles formed by pk and the vertices
of the triangle that contains pk. Therefore, A(ph j) measures
how much the area of a triangle t is enclosed within a re-
gion of the image. A small value of A(ph j) indicates that h j
intersects an edge of the image close to the boundary of the
triangle. Thus, values of E(t) close to zero indicate that t is
well fitted within a region in the image. Hence, a triangle t
is considered unsuitable if E(t) > cE , where 0 ≤ cE ≤ 1 is
an user defined scalar.

Unsuitable triangles are eliminated by inserting, in the
Delaunay triangulation, the point ph j such that E(t) =
A(ph j). Since ph j are points chosen to be as far as possible
from the vertices of M, the problem of dense accumulation
of points around existing vertices is reduced.

After the mesh generation process, segmentation can be
performed by combining image attributes with topological
and geometric information contained in the mesh so as to

a) b)

Figure 2. Error measure in a triangle. a) De-
tection of region borders, b) Geometric inter-
pretation of the function E.

group cells into sub-meshes.

4 Mesh + MRF segmentation

This section shows how the traditional MRF segmenta-
tion model over neighbouring pixels can be extended to 2D
mesh structures.

The greatest different between mesh structures and im-
ages is in the geometry of the elements handled by both.
Image pixels have the same shape, geometry and number
of neighbours. 2D meshes, on the other hand, contain tri-
angles of varied sizes, symmetry and a neighbourhood with
different number of elements. Moreover, each neighbouring
element may exhibit a wide–range adjacency degree. Fig-
ures 3(a) and 3(b) illustrate a general neighbouring scheme
for a 2D mesh of a set of triangles and its respective cliques.

(a) (b)

Figure 3. (a) Neighbourhood of a 2D mesh
and (b) its corresponding cliques.

To handles mesh triangles, the original EM/MPM must
be modified. The MPM estimation algorithm for the label
field X is extended so as to assign a weight, whose value de-
pends on the planar geometry shared by the triangle and its
neighbours, to every neighbouring element of every triangle
in the mesh. Equation (6) is then rewritten as:



t(xr,xs) =

{
0, if xr = xs,
as,r

ps
, if xr 6= xs,

(8)

where as,r is the length of the edge shared by the triangles s
and r, whereas ps is the perimeter of s.

The parameter estimation algorithm EM is also altered.
For an image, the intensity of each pixel has the same im-
portance (weight) in the process. Mesh triangles, however,
due to their varied geometry may possess different weights.
The estimates for the set of parameters θ, as described by
Comer and Delp [5], becomes:

µk(p) =

N

∑
s=1

ysP(Xs = k|Y = y,θ(p−1))×as

N

∑
s=1

P(Xs = k|Y = y,θ(p−1))×as

(9)

and

σ
2
k (p) =

N

∑
s=1

(ys−µk(p))2P(Xs = k|Y = y,θ(p−1))×as

N

∑
s=1

P(Xs = k|Y = y,θ(p−1))

(10)
and as is the area of the triangle s, used as a weight for
the computation of variance and mean values of grey level
of each label k. This proposal is equivalent to dividing, in
equation 2, the variance σ2

xs by the area of the triangle.

5 Results

To best illustrate the benefits of the proposed method we
provide results from MRF segmentation alone (as described
in section 2 and the Imesh method [6], a image based mesh
generation and segmentation technique with no MRF-like
neighbourhood relationship (as described in section 3).

We then confront both of them with the results obtained
from the proposed method, for different values of β (Eq.
5). This parameter governs the influence of the geome-
try over the Mesh+MRF segmentation, as stated in Eq. 8.
When β = 0, the geometry information from Eq. 8 is not
considered. In this paper, we refer to this segmentation as
Mesh+MRF with no geometry information. When β > 0,
not only the neighbouring relationship of the MRF model,
but also geometry information is added to the segmentation
process. The higher the β parameter, the more geometry in-
formation the model conveys. This segmentation is referred
to as Mesh+MRF with geometry information.

The behaviour of the Mesh+MRF segmentation method
for increasing values of β is illustrated in Figure 4. Figures

a) b)

c) d)

e) f)

Figure 4. a) Original CT slice of a mon-
key head; b) Mesh Generated from (a); c)
Mesh+MRF with no geometry information
(β = 0). Mesh+MRF segmentation with geom-
etry information: d) β = 1; e) β = 2; f) β = 3

4(a) and 4(b) are the original CT slice of a monkey head and
its image-generated mesh, respectively. Figures 4(c), 4(d),
4(e) and 4(f) are the 2–class segmentation results for β = 0,
1, 2 and 3, respectively. When β = 0, no geometry informa-
tion from the triangles is considered and the segmentation
is poor. As the value of β increases the perimeter and the
length of the edge shared by neighbouring triangles become
more relevant, yielding a smoother and more accurate seg-
mentation.

Figure 5 illustrates the segmentation process (3 classes
considered) for a CT scan slice of a foot. Figures 5(a) and
5(b) are, respectively, the original image and the mesh gen-
erated by the Imesh technique. Segmentation for the MRF
method alone and Imesh (with no MRF model added) are
given in 5(c) and 5(d), respectively. Images 5(e) and 5(f)
are the results obtained with the Mesh+MRF segmentation
without and with geometry information, respectively.

Notice how the segmentation from Mesh+MRF with ge-
ometry information is significantly more consistent than



a) b)

c) d)

e) f)

Figure 5. a) Original MRI image of a foot; b)
Mesh Generated from (a); c) Segmentation by
MRF alone; d) Mesh segmentation alone; e)
Mesh+MRF segmentation with no geometry
information; f) Mesh+MRF segmentation with
geometry information (β = 3)

that computed from mesh segmentation without the MRF
extension. Although not as good as the Markovian segmen-
tation alone (Figure 5.c), due to the highly textural nature
of the foot image, the result in 5(f) is an evidence of how an
image-based mesh segmentation method can benefit from
incorporating features originally designed for texture image
segmentation such as MRF.

The final experiment of Figure 6 shows how the new
method can contribute to shorten the processing time when
compared with MRF segmentation alone. Image 6(a). is
a high resolution (140x570) satellite image of the Superior
lake on the Canadian border with the USA. Images 6(b) and
6(c) are, respectively, the segmentation results (2 classes)
for the MRF alone and the Mesh+MRF method with ge-
ometry information, respectively. Although very similar in
quality, the segmentation by the the new method is approx-
imately 10x faster than that by MRF (see table 1).

a)

b)

c)

Figure 6. a) Original satellite image of a lake;
b) Segmentation by MRF alone; c)Mesh+MRF
segmentation with geometry information

6 Conclusions

This paper introduces a new method that combines MRF
with Mesh to achieve image segmentation. Unlike tradi-
tional mesh segmentation techniques, which operate on ge-
ometrical models, our method takes an image as input, gen-
erate a mesh of triangles and, by treating this mesh as a
Markovian field, produces quality unsupervised segmenta-
tion.

From the experiments we can devise two major contri-
butions from this work. The first is the improvement in
the quality of the segmentation when compared with the
segmentation criteria so far available in the original Imesh
method [6]. Such criteria did not take into account the
statistical information now provided by the addition of the
MRF functionality. The experiment of Figure 5 illustrates
such behaviour. For image with some textural information
and a considerable amount of noise, such that of the foot,
the proposed method yields a more homogeneous segmen-
tation than traditional Imesh, for example. However, as
expected, for such kind of images the MRF segmentation



a)

b)

Figure 7. Meshes generated from fig. 6.a. a)
Mesh employed in the segmentation of 6.c; b)
Better quality mesh;

Image MRF Mesh+MRF
Mesh Gen. Segment Total

Monkey
(256x256) 10 1.125 0.468 1.593
Foot
(256x256) 12 1.263 1.375 2.638
Lake
(1140x570) 90 6.64 2.343 8.983

Table 1. Segmentation times (in seconds) for
the MRF and Mesh+MRF methods

method alone gives a better result. On the other hand, as
demonstrates the experiment of Figure 6, the Mesh+MRF
method can still provide comparable results with those of
MRF alone for images with some textural information and
irregular edges, provided the edges of the object sought are
better delineated.

The second major contribution is a significant reduction
in the segmentation times, especially when compared with
MRF segmentation alone. As opposed to traditional MRF
segmentation methods that operate on pixels, our approach
deals with a mesh of triangles. Since the number of trian-
gles of the mesh is much smaller than that of pixels in the
corresponding image, the resulting segmentation is much
faster. The values in table 1 give some evidences of this
behaviour. Despite being a two-stage process (mesh gen-
eration and segmentation itself) the overall segmentation

times for the Mesh+MRF method are much smaller than
those achieved with MRF method alone. The difference in
processing times becomes more evident, for data of larger
dimensions such as the satellite image of the lake. Reported
segmentation time have been computed on a Xeon 3.2 GHz
system, with 2GB RAM, running Windows.

Finally, it should be pointed out the ability of the method
to incorporate quality criteria to the mesh elements [20, 17],
while keeping the edges obtained during the segmentation
process. Figure 7(a) shows the original mesh over the seg-
mented image of the Lake 6(a). Figure 7(b) depicts a refined
mesh derived from 7(a), with all edges preserved. A mini-
mum angle value of 30o has been used as a quality criterion
in this example.
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