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Abstract

In this paper, we propose different criteria for detecting

unusual motion in surveillance cameras. Initially, a certain

environment is observed within a time interval, and cap-

tured trajectories are used as examples of usual trajecto-

ries. These trajectories are used to build a Spatial Occu-

pancy Map (SpOM, which is introduced in this paper) of

the observed people, as well as main flow directions. In

the test period, each new trajectory is classified as normal

or unusual with respect to spatial occupancy and trajectory

consistency. The spatial occupancy criterion considers the

relation of space occupancy between the new tracked tra-

jectory and the observed period. The trajectory consistency

criterion considers the agreement of the new trajectory with

the main flows extracted in the training period. Experimen-

tal results showed that these criteria can be used as an au-

tomatic pre-screening of suspect motion in surveillance ap-

plications.

1 Introduction

A relevant problem in computer vision is the automatic

detection of suspect motion in filmed video sequences. In

fact, surveillance cameras are becoming a popular solution

for crime prevention, and the development of automatic

techniques to detect suspect motion could improve the ef-

ficiency of surveillance systems.

The definition of suspect motion is very context-

dependent, and it is very difficult to define general criteria

to identify suspect movements in a general context. A more

treatable problem is the definition of unusual motion, given

a training set (the observed period) of “normal” trajectories.

We believe that one could qualify the motion of a given per-

son as normal/unusual with respect to the following criteria:

1. Spatial occupancy: a new trajectory can be considered

unusual if it comprises a spatial region significantly

different than the training period.

2. Trajectory coherence: a person may walk in region that

was extensively occupied in the training period, but

present an abnormal behavior with respect to trajec-

tory consistency (e.g. all people in the training period

move east-west, but the new tracked person moves in

the same region in the opposite direction west-east).

3. Interaction with other people: in certain situations,

only the trajectory itself is not enough to character-

ize suspect motions, as people interact among them.

For instance, two persons may walk coherently with

respect to the previous criteria, but one could be suspi-

ciously following the other.

We also believe that several other criteria may be consid-

ered for specific applications, such as people carrying ob-

jects, moving with suspicious poses, etc. However, in this

work we focus our analysis in the first two criteria: spatial

occupancy and trajectory coherence.

The remainder of this paper is organized as follows. Sec-

tion 2 presents an overview of techniques based on com-

puter vision for detection unusual movements. The pro-

posed algorithm is provided in Section 3, and experimental

results are given in Section 4. Finally, our conclusion are

drawn in Section 5.

2 Related Work

Several researchers have been analyzing the problem of

detecting unusual motion in filmed video sequences. Next,

some of these techniques are briefly revised (a more exten-

sive review on visual surveillance systems can be found in

[10]).

Boghossian and Velastin [1] discussed how to detect dan-

gerous situations in large crowds and how to detect walls

and strangle points on the way of such people. They fo-

cused on detecting such events using motion vectors and

segmentation of the crowd flow. A large crowd moving in

a busy space is classified as non-rigid elastic motion and

the results of this system can be assisted in real-time by an

operator to improve crowd safety.

Davies et al. [5] described a model using field theory

and flow dynamics in order to discuss crowd behaviors, and
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also to provide the expertise to suggest solutions for crowd

monitoring and control based on image processing and un-

derstanding. The main theme of their research is to find

general models of crowd behavior, which do not rely upon

detecting the behavior of individuals.

Others works are focused on tracking people individ-

ually. Stauffer and Grimson [17] worked with statistical

methods to track people and other objects, achieving ro-

bustness on day and on night. In their work, objects are

classified and recognized through prior models. The sys-

tem learns with such recognitions and accumulated proto-

type motion histogram from filmed recognized sequences,

that allow the system to detect unusual events. An inspec-

tor watching may help to classify the level of danger of that

scene. In this work, they are more concerned with people

recognition and their interaction with objects for surveil-

lance applications.

Buxton and Cong [2] describe their method to determine

individual people behavior using Bayesian networks. First,

a camera is calibrated with a three-dimensional model of

the area, which is previously described. Objects are recog-

nized through hierarchical segmentation of the roundabout

ground-plane. The object’s dynamic is tracked and its be-

havior is described as Bayesian networks, which contain in-

formation such as time and events. To classify events, the

system detects the proximity of agents as not near, nearby,

close, very close and touching.

The methods described in [12–14] use the concept of tra-

jectory clustering to detect unusual patterns. In [13], tra-

jectories are grouped according to a distance-based similar-

ity metric in a training period, generating different clusters.

Then, a Bayes network is used to determine in which clus-

ter the new trajectories should be grouped. If no cluster is

found, the analyzed trajectory is detected as unusual. In

addition, a grammar is used in order to provide textual se-

mantics for the tracked trajectories. Junejo et al. [12] used

a tracking algorithm to capture trajectories of people from

a surveillance camera, and used a graph-based approach for

trajectory clustering. Such clusters should contain “normal”

trajectories, and movements with significant discrepancies

with respect to “normal” trajectories are classified as sus-

pect motion. Makris and Ellis [14] used the same basic

concepts of trajectory clustering, but with a probabilistic ap-

proach based on Gaussian Mixture Models.

Fung and Jerrat [8] proposed a system where neural net-

works are used in order to determine the order in which

spatial and pre-defined zones are populated. Then unusual

trajectories can be detected if one tracked trajectory does

follow one of these orderings. The model described in [15]

does not detect directly unusual or usual behaviors. Instead,

it determines the locations where people typically go, and

it uses a Markov model to detect if patterns different than

observed ones happened.

It can be observed that the essence of most references is

similar: to detect unusual behavior if the new trajectory dif-

fers from a set of trajectories obtained in a training period,

according to a similarity measure. Such measure typically

takes into account the spatial distance between trajectories

and coherence of velocity vectors. In this work, we decou-

ple the spatial information from the “flow coherence” infor-

mation, and classify trajectories as normal or unusual with

respect to these two criteria. The proposed model is de-

scribed next.

3 The proposed model

The scope of this paper is to detect unusual trajectories

automatically, using surveillance cameras. Let us consider

that a given environment is monitored by a static camera.

Also, let us assume that people move following main direc-

tion flows, and occupying roughly the same portion of space

within a certain time period. For instance, if we consider a

region around a restaurant close to lunch time, people would

mostly walk toward the restaurant.

3.1 Automatic people tracking in video
sequences

Several vision-based techniques for people tracking in

video sequences have been proposed in the past years [3,

4, 6, 16, 18], most of them with surveillance purposes. In

these applications, an oblique (or almost lateral) view of

the scene is required, so that faces of the individuals can

be recognized. In our case, we rely basically on surveil-

lance cameras installed at the top of buildings, generating

(approximately) top-view images. It is important to no-

tice that the expected longitudinal projection of a person in

oblique-lateral views is explored by several tracking algo-

rithms, such as [3, 6, 9]. However, such hypothesis clearly

does not apply in this work, requiring a different strategy

for people tracking. In fact, a person’s head is a relatively

invariant feature in top-view (or almost top-view) camera

setups, indicating that tracking can be performed through

template matching.

In the proposed approach for people tracking, we

adopted a background model that incorporates shadow re-

moval [11] to detect foreground objects (blobs) in grayscale

video sequences. Assuming that the head of the person is

at the center of the blob, we apply the Distance Transform

(DT) to the negative of each new foreground blob (i.e. back-

ground pixels are used as the binary image required to com-

pute the DT). The global maximum within each blob returns

the approximate location of the head center, and square tem-

plate T centered at this position is created.

For blob tracking, we compute the Sum of Squared Dif-

ferences (SSD) between the template T and a small neigh-



borhood of T (since there is a maximum displacement for

each person in consecutive frames), and retrieve the position

that minimizes the SSD as the new template center. Such

correlation procedure is repeated for all subsequent frames,

until the person disappears from the camera view.

Although the head is a good choice for the correlation

template, head tilts and illumination changes may vary the

graylevels within the template. Also, the procedure for se-

lecting the initial template may not detect exactly the center

of the head. To cope with such situations, T is updated ev-

ery Mf frames (we used Mf = 5 for sequences acquired

at 15 FPS). As a result of the tracking procedure, we get

the equations (xi(t), yi(t)), for i = 1, ..., N , where N is

the number of tracked people. These trajectories are used to

compute a Spatial Occupancy Map and groups of coherent

trajectories in the observed period, as explained next.

3.2 Spatial Occupancy Maps

A Spatial Occupancy Map (SpOM) is an image with the

same size as the Region of Interest captured by the cam-

era (or ROI, which is assumed to be rectangular), that pro-

vides the average occupancy of each spatial position in the

training region at a given scale. The underlying idea be-

hind the SpOM is simple: initialize the SpOM with zeros,

and increment each position of the SpOM (at each frame)

every time that a person is detected at this position dur-

ing the training period. At the end of this procedure, the

SpOM would contain large values at highly occupied posi-

tions. However, this approach would also lead to a highly

local analysis, since one could be able to see individual tra-

jectories. Also, tracked trajectories are one pixel wide (they

relate to the “center” of the tracked person), while the space

occupied by the person is larger. Furthermore, tracking al-

gorithms typically are not pixelwise accurate, so that two

persons walking exactly the same path could lead to two

different trajectories.

To cope with these issues, we include a scale parameter

σ when building the SpOM. Let us consider a certain per-

son located at the position (x, y) at a given frame. Instead

of incrementing only the position (x, y) of the SpOM, we

spread the influence of this point to a neighborhood accord-

ing to a Gaussian weight function with standard deviation

σ. Larger values of σ lead to a wider influence of each tra-

jectory, corresponding to a coarser scale of analysis; on the

other hand, smaller values of σ lead to better discrimination

of individual trajectories, resulting in a finer (more local)

scale of analysis.

Mathematically, the SpOM Sσ at the scale σ is given by:

Sσ(x, y) =

N
∑

i=1

Nf (i)
∑

t=1

gσ (x − xi(t), y − yi(t)) , (1)

where N is the number of tracked people, Nf (i) is the dura-

tion (in frames) of the ith trajectory, and gσ(x, y) is a trun-

cated discrete bidimensional gaussian kernel, given by:

gσ(x, y) =

{

1
c
e

−x2
−y2

2σ2 , if − 2σ ≤ x, y ≤ 2σ

0 otherwise
, (2)

and c is a normalization constant so that
∑

(x,y)

gσ(x, y) = 1.

A simple and fast way to implement Equation (1) is through

the following convolution:

Sσ(x, y) = Sδ(x, y) ∗ gσ(x, y), (3)

where Sδ is the SpOM obtained by incrementing the value

Sδ(x, y) every time that a person is detected at position

(x, y), at each frame. This is exactly the same as computing

Equation (1) using gσ(x, y) as a discrete Dirac delta func-

tion, instead of a Gaussian kernel.

Figure 1 illustrates the computation of SpOMs using dif-

ferent values for σ. Figure 1(a) shows the filmed environ-

ment, and Figure 1(b) shows individual tracked trajectories.

The computed SpOMs using σ = 5 and σ = 15 are illus-

trated, respectively, in Figures 1(c) and 1(d). In general, σ

should be chosen based on the average size of a person in

a given camera setup. Considering that in top-view images

each person is roughly an ellipse, an appropriate choice for

σ is the largest semi-axis of the approximating ellipse. For

the camera setup in Figure 1(a), σ = 15 is an appropriate

choice.

3.2.1 Trajectory Occupancy (SpOM Test)

Let us consider the SpOM Sσ(x, y), for a given value

σ. Let (xi(t), yi(t)) denote the trajectory of person i

to be analyzed, where t denotes time. For usual tra-

jectories (with respect to the spatial occupancy criterion),

the SpOM Sσ(x, y) should be sufficiently large along the

tracked curve (xi(t), yi(t)). In fact, the function Sσ,i(t) =
Sσ(xi(t), yi(t)), for 0 ≤ t ≤ Nf (i), represents the spa-

tial occupancy of person i across time. Such function can

be used to detect portions of the trajectory that present low

spatial occupancy, by comparing Sσ,i(t) to a threshold Tsom:

frames t such that Sσ,i(t) ≤ Tsom are considered “unusual”

with respect to the spatial occupancy.

A very simple choice would be to set Tsom = 0, so that

every non-zero pixel of Sσ(x, y) belongs to a valid occu-

pied region. However, the convolution with the Gaussian

kernel used to compute Sσ(x, y) tends to increase the re-

gion that was actually occupied by tracked people in the

training period. Our suggestion is to obtain the threshold

Tsom adaptively from the SpOM by removing a portion r of

the smallest values of Sσ(x, y) (such discarded values are



(a) (b) (c) (d)

Figure 1. (a) Filmed environment. (b) Individual trajectories. (c) SpOM computed with σ = 5. (d)

SpOM computed with σ = 15

associated with the spread produced by the tail of the Gaus-

sian), as described next.

Let Q be a vector containing all the non-zero values of

the SpOM Sσ , and let Qs represent the sorting (in ascending

order) of Q. If n is the length of Qs, then:

Tsom = Qs (⌊rn⌋) , (4)

where ⌊·⌋ represents the integer part of a number. In other

words, Equation (4) retrieves the value of Q that lies in the

r−percentile of its distribution. In all experiments, we used

r = 0.4.

Figure 2(a) illustrates a tracked trajectory in the test pe-

riod superimposed to the SpOM computed in the training

period. The plot of the corresponding function Sσ,i(t) is

shown in Figure 2(b)1. It can be observed that the tracked

person presents two portions in which the spatial occupancy

is very small (in fact, it is zero in a considerable fraction of

these portions), meaning that he/she walked on a region that

was not occupied in the training period.
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Figure 2. (a) Trajectory overlaid to the SpOM.

(b) Spatial occupancy along the trajectory

shown in (a).

3.2.2 Trajectory Distance (DT Test)

1For visualization purposes, we normalized t such that 0 ≤ t ≤ 1 in

all trajectories.

A relatively common situation occurs when a person

walks very close (or a little outside) the occupied region

in the training period. In such case, the associated function

Sσ,i(t) could be very small (or even null) during a large por-

tion of the trajectory, which would lead to a its classification

as unusual. An example of such trajectory is illustrated in

Figure 3.
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Figure 3. (a) Trajectory overlaid to the SpOM.

(b) Spatial occupancy along the trajectory
shown in (a).

Also, if a person is moving along a path that was not

occupied in the training period, the corresponding function

Sσ,i(t) would be identically zero, regardless of the distance

from the person to the occupied region. One way to evaluate

the distance of a given path to the “occupied” region is use

the Distance Transform.

The Distance Transform (DT) is a well known tool in

computational geometry and image processing. Given a bi-

nary image I , the distance transform is an image D with the

same size as I , such that its value D(x, y) at a certain pixel

(x, y) corresponds to the shortest distance between (x, y)
and any non-zero pixel of I .

To use the DT, we must initially build a binary image

where pixels marked as one represent valid occupied re-

gions. For that purpose, we apply a threshold to the pre-



viously computed SpOM image Sσ(x, y):

I(x, y) =

{

1 if Sσ(x, y) ≥ Tsom

0 otherwise
, (5)

where Tsom is exactly the same threshold used to detect

portions of trajectories with low spatial occupancy, as de-

scribed in Section 3.2.1. The binarized version of the

SpOM shown in Figure 1(d) is illustrated in Figure 4(a),

and the corresponding Distance Transform is illustrated in

Figure 4(b).

(a) (b)

Figure 4. (a) Binarized SpOM. (b) Distance
Transform of (a).

Let D(x, y) denote the Distance Transform of the binary

image I(x, y). The evolution of the minimum distance from

a trajectory (xi(t), yi(t)) and the occupied region (repre-

sented by the binary image I) is given by:

di(t) = D (xi(t), yi(t)) , (6)

and unusual portions of the trajectory are detected when

di(t) > Tdist, where Tdist is the maximum allowed distance

from the trajectory to the valid occupied region. Although

we believe that Tdist is context-dependent, a default value

could be automatically set based on σ (which, in turn, was

chosen based on the average size of a person in image coor-

dinates, as described in Section 3.2). In all examples shown

in this work, we used Tdist = 2σ.

The “distance” test (or simply DT test) applied for the

trajectories illustrated in Figures 2 and 3 are shown, respec-

tively, in Figures 5 and 6. As expected, the trajectory in Fig-

ure 5 presents portions with large deviations from the valid

occupied region (hence, marked as unusual). On the other

hand, the trajectory in Figure 6 is always close to the valid

occupied region, and was marked as usual at all positions2.

It is interesting to notice that the plots Sσ,i(t) and di(t),
used in the SpOM test and DT test, respectively, provide

complementary information. The function Sσ,i(t) only car-

ries information in valid occupied regions, and zero other-

wise. On the other hand, the function di(t) carries infor-

mation only outside valid occupied regions, and zero other-

wise. We believe that the DT test is a better choice to detect

2Please, notice that the plots in Figures 5(b) and 6(b) are shown with

different scales, but using the same threshold Tdist = 30.

unusual portions of the trajectory, and Sσ,i(t) can be used

as an auxiliary tool to evaluate the mean occupation of the

trajectory.
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Figure 5. (a) Trajectory overlaid to the Dis-

tance Transform. (b) Distance from a valid
occupied region along the trajectory shown

in (a).
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Figure 6. (a) Trajectory overlaid to the Dis-
tance Transform. (b) Distance from a valid

occupied region along the trajectory shown
in (a).

So far, we have classified individual portions of a tra-

jectory into usual or unusual, using either the SpOM test

or the DT test. We can also provide a classification of the

whole trajectory, by comparing the duration of unusual por-

tions with the total trajectory duration. If Di
unusual denotes

the duration of the unusual portions of the ith trajectory (in

frames), the whole trajectory is classified as unusual if:

Di
unusual < TunusualNf (i), (7)

where 0 ≤ Tunusual ≤ 1 is a threshold, and again Nf(i)
represents the duration of the trajectory (in frames). Al-

though Tunusual is application and context dependent, we

used Tunusual = 0.3 in all examples. As an illustration,

Di
unusual values for the trajectories shown in Figures 5 and 6

are, respectively, 0.62 and 0. The first trajectory is then

classified as unusual, while the second one is usual, using

the DT criterion.



Figure 7. Different “flow clusters” detected for the environment shown in Figure 1(a).

3.3 Trajectory Consistency

The method described above can be used to detect un-

usual movements with respect to the spatial occupancy of an

environment. However, one trajectory may present a large

SpOM at all points, but its dynamics may be unusual when

compared to other trajectories of the training period. For

example, all persons in the observed period may walk in the

east-west direction, having a roughly uniform spatial occu-

pation. If a person moves in the same environment in the

west-east direction, he/she could present a normal spatial

occupancy, but the trajectory would not be coherent with

the training set.

Our second criterion for detecting unusual movements is

based on the coherence of trajectories, in the sense that two

similar trajectories should present roughly the same flow

directions. It should be observed that grouping trajectories

into similar classes was used in [12–14]. However, all these

methods employ some kind of distance-based metric to de-

fine similar trajectories, while the present approach intend

to cluster trajectories according to main direction flows. For

example, two persons moving at coherent speeds, from east

to west, at a sufficiently large lateral distance apart, would

probably generate different clusters according to the ap-

proaches [12–14]. However, these persons present simi-

lar flow directions, and would be considered similar in our

approach. Our trajectory clustering algorithm is described

next.

Let (xn(s), yn(s)), for 0 ≤ s ≤ 1, be a reparametriza-

tion of the trajectory (x(t), y(t)) with respect to the nor-

malized arclength s, so that (xn(0), yn(0)) represents the

initial point of the trajectory and (xn(1), yn(1)) represents

the end point. Such trajectory is characterized by a set of N

displacement vectors (∆xi, ∆yi) computed at equidistant

arclengths:

(∆xi, ∆yi) = (x(si+1) − x(si), y(si+1) − y(si)) , (8)

where si =
i

N
, i = 0, · · · , N − 1. For each trajectory j, a

2N -dimensional feature vector fj is obtained by combining

the N displacement vectors associated with the trajectory:

fj = (∆x0, ∆y0, ∆x1, ∆y1, · · · , ∆xN−1, ∆yN−1) . (9)

Coherent trajectories are expected to produce similar fea-

ture vectors f , generating a cluster in the 2N -dimensional

space, which is modeled as a Gaussian probability distri-

bution. Each class k is characterized by its mean vector

µk and covariance matrix Ck, as well as the prior proba-

bility wk . Since each cluster relates to a different Gaussian

function, the overall distribution p(x) considering all fea-

ture vectors f can be modeled as a mixture of Gaussians:

p(x) =

kmax
∑

k=1

wkpk(x), (10)

where kmax is the number of classes and

pk(x) =
(2π)−N

√

|Ck|
exp

{

−
1

2
(x − µk)T C−1

k (x − µk)

}

(11)

(a) (b) (c)

Figure 8. Examples of usual (a,c) and unusual (b) trajectories with respect to trajectory consistency,

using the clusters displayed in Figure 7.



is the normal distribution associated with the kth class. The

number of Gaussians in the mixture (which corresponds to

the number of clusters), as well as the distribution parame-

ters of each individual distribution can be obtained automat-

ically using the unsupervised clustering algorithm described

in [7]. Then, each feature vector x in the training period is

assigned to a class k according to:

k = argmin
j∈{1,···,kmax}

wjpj(x), (12)

which is equivalent to selecting the class with the highest a

posteriori probability, according to Bayes rule.

The number N of displacement vectors used to assem-

ble fj is chosen based on how structured the flow of people

is. For relatively simple trajectories, small values of N can

capture the essence of the trajectories. On the other hand,

more complicated trajectories (with many turns) are better

characterized using larger values of N . In general, public

spaces tend to present main flow directions, and N = 1 or

N = 2 are usually good choices. It should also be noticed

that larger values for N result in higher dimensional feature

vectors, requiring a larger number of sample for the cluster-

ing algorithm. For example, Figure 7 illustrates the cluster-

ing procedure for the environment shown in Figure 1. As it

can be observed, four main “direction flows” were detected

by the clustering algorithm, using N = 1.

During the clustering process (in the training period),

we can also determine a minimum acceptable probability

threshold Pk for each class:

Pk = min
x∈ class k

{pk(x)}. (13)

In the test period, the feature vector y related to a new tra-

jectory is initially assigned to an existing cluster k accord-

ing to Equation (12), but it is rejected (hence, considered

unusual) if its probability is lower than the minimum ac-

ceptable for the class, i.e., if:

pk(y) < Pk. (14)

Figure 8 illustrates usual and unusual trajectories with

respect to trajectory consistency. The trajectory in Fig-

ure 8(a) was associated with the second cluster (second im-

age in Figure 7, from left to right), and was not rejected by

condition (14). Consequently, it was considered an usual

trajectory. On the other hand, the trajectory in Figure 8(b)

was initially assigned to the third cluster, but it satisfied con-

dition (14), and was rejected (hence, considered unusual).

Figure 8(c) shows an example of possible misclassifica-

tion with respect to the trajectory coherence criterion (using

N = 1 for clustering). In this example, a person climbed up

the stairs and right after climbed down, and this movement

may be considered unusual. However, the trajectory was

considered usual (it was associated with the third cluster in

Figure 7 and was not rejected by condition (14)). Such mis-

classification happened because the value N = 1 captures

only the global displacement of the trajectory, and positions

in the middle of the trajectory (where the possible suspect

motion ocurred) are disregarded. However, this unusual be-

havior in the middle of the trajectory can be detected using

N = 2 in the clustering stage. It it interesting to notice that

all three trajectories in Figure 8 were considered usual with

respect to spatial occupancy (in the DT test).

4 Experimental Results

In this Section we present some results of usual/unusual

trajectory detection based on spatial occupancy and trajec-

tory coherence. Figure 9(a) shows the trajectory of a tracked

person. Usual portions of the trajectory (according to the

DT criterion) are shown in blue, and unusual portions in

red. It can be observed that the transition from usual to un-

usual was detected on-the-fly, so that security staff could be

alerted. The whole trajectory was classified as unusual in

the DT test, according to Equation (7). This trajectory is

also unusual using the consistency criterion, since it is as-

signed to class 3 and satisfies condition (14). Indeed, this

trajectory may be considered suspect, since the person left

the pathway and walked on the grass.

Figure 9(b) illustrates the trajectory of another tracked

person, along with its usual/unusual portions (in the DT

test). It can be observed that this person started on the path-

way and deviated to the parking lot (non-occupied region in

the training period), approaching again to the pathway, and

finally leaving the scene. This trajectory was also consid-

ered unusual with respect to the cluster coherence criterion,

since it was assigned to class 4 and exceeds the threshold

as in condition (14). The attached short movie shows the

actual footages used in Figures 9(a) and 9(b), along with

tracked trajectories and on-the-fly detection of unusual tra-

jectory portions using the DT criterion.

(a) (b)

Figure 9. Tracked trajectories with usual
(blue) and unusual (red) portions, using the

DT criterion.



5 Conclusions

This paper presented a new approach for classifying tra-

jectories as usual or unusual using computer vision, based

on two criteria: spatial occupancy and trajectory coherence.

In a training period, tracking algorithms are applied to ob-

tain individual trajectories. Such trajectories are used to

build a Spatial Occupancy Maps (SpOM), that provides a

representation of regions covered by tracked trajectories.

Also, trajectories are clustered into coherent classes, rep-

resenting main “direction flows”. Then, a new trajectory is

compared both with the SpOM and the clusters. Compar-

isons with the SpOM provide portions of the trajectory that

lie in low-occupancy regions, and also the deviation from

the person to a valid region. Comparisons with the clusters

provide the coherence of the new trajectory with respect to

the training period.

The proposed method can be used as an auxiliary tool in

surveillance systems. For instance, the system could trigger

an alarm when a tracked person exceeds the threshold Tdist,

meaning that he/she is far enough from the valid occupied

region to be considered in an unusual position. The human

operator could then take a better look at that person.

It is important to emphasize that our method relies

strongly on the trajectories used in the training period,

which are examples of usual motion. Such training period

may vary depending on the hour of the day, and could lead

to different time-dependent training periods. For example,

it is common to see people moving to the parking lot to get

their cars right after classes, but it is not an usual behavior

in the middle of classes.

For future work, we intend to explore the issue of time-

dependent training periods, and include the relashionships

among people in our analysis.
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