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Abstract

The estimation of multiple orientations in multi-
dimensional signals is a strongly non-linear problem to
which a two-step solution is here presented. First, the prob-
lem is linearized by introducing the so-called mixed-
orientation parameters as a unique, albeit implicit, de-
scriptor of the orientations. Second, the non-linearities
are decomposed such as to find the individual orienta-
tions. For two-dimensional signals, e.g., images, this de-
composition step is solved by simply determining the roots
of a polynomial. For multi-dimensional signals, the nD de-
composition problem is solved by reducing it to a cascade
of 2D decomposition problems. In this way, a full solu-
tion for the estimation of any number of orientations in any
dimension is achieved for the first time.

Key words: multiple orientations, multiple motions, trans-
parency, occlusion.

1. Introduction

The analysis of local orientation in images and multidi-
mensional signals is an essential step in, e.g., directional fil-
tering [1, 2], directional interpolation [9], feature extraction,
tracking, motion estimation [17, 13, 11, 5], pattern analy-
sis [8, 12, 5], compression [7, 15] and the understanding of
the human visual system [25]. Multiple orientations appear
in non-opaque imagery like X-ray, ultrasound, and com-
puter tomography. Moreover, they characterize image fea-
tures like corners, crossings and bifurcations. In such ap-
plications, orientation estimation seeks to find locally one-
dimensional (1D) structures such as lines in images [4, 1, 2]
or multi-variate image data [9, 5]. Corners and junctions are
a rich source of information: L- and Y-junctions represent
object corners, T-junctions occur at occluding object bound-
aries, X-junctions at object crossings, while ψ-junctions are

caused by bending object surfaces. In such signals more
than one single orientation is present, and these multiple
orientations cannot be described accurately by assuming a
single orientation. Multiple orientations have been an active
subject of research in image processing and vision science,
see [21, 6, 19, 17] and the references therein. The problem
of estimating N multiple orientations in 3D and 2D can be
divided into a linear and a non-linear part [17]. In the lin-
ear part, the mixed-orientation parameters (MOP) are esti-
mated by standard linear techniques such as least squares or
singular value decomposition. Since the nonlinearities are
hidden in the mixed-orientation parameters, these do not
provide the orientations explicitly. In the nonlinear part, the
orientations are obtained from the MOP by solving for the
roots of an N−degree polynomial. This approach has been
extended to an hierarchical algorithm [17], which succes-
sively tests for zero, single, double or more orientations in
a local neighborhoods and then solves for the appropriate
number of orientations.

In this paper, we present a more general framework for
estimating multiple orientations in multi-dimensional sig-
nals. We model multiple orientation signals as an additive
superposition of a set of one-dimensional oriented signals,
but occluded orientations can be approached in the same
manner [3, 22, 16, 14]. As a major contribution, we then
present a general solution for decomposing the MOP into
the individual orientations, and thereby overcome previous
limitations in either the dimension of the signal or the num-
ber of orientations [20, 21, 17, 3, 22, 16, 14]. This paper
is organized as follows. In Section 2, we review decom-
position methods for superimposed double orientations in
images. Next, we present a robust method for decompos-
ing any number of orientations (that are intermingled in the
MOP) for the 2D case. We then deal, in Section 4, with the
problem of transparent motions; and in Section 5, we show
how the estimation of orientations in 3D can be performed
by reducing the problem to the transparent motion case. A
general solution for the decomposition of the MOP involv-



ing any number of orientations in spaces of arbitrary num-
bers of dimensions is presented in Section 6. The solution is
obtained by transforming the general case of multiple orien-
tations in multi-dimensional signals to a cascade of decom-
position problems for the 2D case. Finally, in Section 7, we
present some applications of the technique both for the anal-
ysis of orientations in images and the estimation of multiple
motions.

2. Estimation of two orientations in 2D

We start with one special case of orientations in 2D,
namely the problem of estimating the velocities of overlaid
one-dimensional waves.

One-dimensional motion. Consider a wave g : R → R

moving with constant velocity v. At each position in space-
time, we can observe the value f(x, t) = g(x − tv). We
wish to determine the velocity of propagation v. The hy-
pothesis of constant velocity is equivalent to the property
that the observed space-time signal f : R × R → R is con-
stant along the lines x − tv = a. By taking derivatives, we
find the well known flux equation vfx + ft = 0, where
fx, ft are the partial derivatives of f. From the flux equa-
tion, the velocity can easily be estimated.

Now consider two waves g1, g2 simultaneously propa-
gating with constant velocities u and v. The observed sig-
nal is, therefore, f(x, t) = g1(x − tu) + g2(x − tv). i.e.,
the overlaid superposition of two single oriented patterns in
space time. The constraint equation for the velocities be-
comes

uvfxx + (u+ v)fxt + ftt = 0. (1)

Equation (1) is non-linear in the motion parameters them-
selves, but linear in the so-called mixed motion parameters
(MMP): cxx = uv, cxt = u + v, ctt = 1, which, there-
fore, can be estimated by standard linear techniques. Once
the MMP are known, the velocities can be recovered as the
roots ofQ2(z) ≡ (z−u)(z−v) = z2−cxtz+cxx. The gen-
eralization of this approach to the case of N overlaid waves
is straightforward.

Multiple orientations in images. An image f : R
2 → R is

said to be oriented along the direction u in a region Ω if

f(x) = f(x + su) (2)

∀x,x + su ∈ Ω. Two collinear vectors u,v can repre-
sent the same orientation. A unit vector u = (cos θ, sin θ)T

describes the orientation of f(x) by the angle θ, which is
conventionally restricted to lie in the interval (−π/2, π/2].
Equation 2 is equivalent to the following constraint that is
valid within Ω, [24, 5, 12].

∂f

∂u
= 0. (3)

(a) (b)

(c) (d)

(e) (f)

Figure 1. Synthetic examples: (a) T-junction,
(b) region with superimposed orientations;
(c) X-junction, (d) estimated orientations.
Real example: (e) X-Ray image of rubber
product, (f) single and double orientations
superimposed.

Double-oriented patterns can be modeled by

f(x) = g1(x) + g2(x). (4)



Since the two components g1 and g2 are assumed to be ide-
ally oriented in the directions u = (ux, uy)T and v =
(vx, vy)T respectively, both components obey Equation (3).
Therefore, the composite image f(x) satisfies the nonlin-
ear equation

∂2f

∂u∂v
= cxxfxx + cxyfxy + cyyfyy = 0, (5)

where the nonlinearities are hidden in the mixed-orientation
parameters (MOP)

cxx = uxvx, cxy = uxvy + uyvx and cyy = uyvy. (6)

As shown in [17], the mixed-orientation parameters can
be estimated from Equation (5) with a least-squares ap-
proach. The resulting mixed-orientation parameter vector
c = (cxx, cxy, cyy)T is an unambiguous descriptors of dou-
ble orientation neighborhoods, thus providing a feature that
could be used, e.g., for tracking. The MOP vector, however,
does not explicitly provide the orientations. In the follow-
ing, we review different approaches to decompose the MOP
into the orientations.

MOP decomposition by normalization. A simple way to
decompose the MOP into the orientation components as-
sumes that ux = vx = 1 (cxx = 1). This can be enforced
by dividing all mixed-orientation parameters by cxx as long
as cxx 6= 0. (In case of cxx = 0 we set u = (1, 0) and the
problem reduces to the one orientation case [22]). With the
above assumption, Equation (6) becomes

cxx = 1, cxy = uy + vy and cyy = uyvy, (7)

and the y-components of the orientation vectors u and v are
obtained as the roots of the polynomial

Q2(z) = (z − uy)(z − vy) = z2 − cxyz + cyy. (8)

This approach has two main drawbacks: (i) we have to
choose a threshold parameter to decide whether cxx = 0,
and (ii) unnecessary errors are introduced in the estimates if
cxx is small because either ux or vx is close to zero. How-
ever, the approach can easily be extended to the general case
of more that two orientations in images as shown in [18].

Rotation of the coordinate system. Alternatively, we can
deal with the case cxx = cyy = 0 by rotating the coordi-
nate system with a randomly chosen rotation matrix R. The
MOP can be represented as the symmetric 2-tensor [20, 10,
14]

C =
1

2
(u ⊗ v + v ⊗ u) =

(

cxx cxy/2
cxy/2 cyy

)

. (9)

A transformation of the coordinate system, say x
′ = Rx,

yields
C

′ = RCR
T (10)

as the tensor representation of the MOP in the new coor-
dinate system. Fortunately, because cxx 6= 0 and cyy 6= 0
in almost every coordinate system, we can always find an
appropriate system for solving the decomposition problem.
Note that this procedure is applicable for improving the es-
timates in cases where cxx is small.

Decomposition matrix. An alternative decomposition
method which circumvents the above difficulties [3, 16]
without any further exceptions determines the orienta-
tion vectors as the rows and columns of the tensor

u ⊗ v =

(

uxvx uxvy

uyvx uyvy

)

=

(

cxx z1
z2 cyy

)

. (11)

The unknown matrix elements z1 and z2 are obtained as the
roots of the polynomial

Q2(z) = z2 − cxyz + cxxcyy (12)

and thus, the desired (yet not normalized) orientation vec-
tors are given by

u = (cxx, z2)
T = (z1, cyy)T

v = (cxx, z1)
T = (z2, cyy)T .

(13)

Eigensystem-based decomposition. Alternatively, it is pos-
sible to decompose the MOP by an eigensystem analysis of
the symmetric 2-tensor in Equation (9) [20, 10]. Denoting
the eigenvalues of C by λ1 and −λ2 and the correspond-
ing eigenvectors by e1 and e2, the (again not normalized)
orientations vectors are given by

u =
√

λ1e1 +
√

λ2e2

v =
√

λ1e1 −
√

λ2e2

(14)

Note that this decomposition method is more general be-
cause it can also be used to solve the decomposition prob-
lem of double oriented higher dimensional signals [21, 16].

3. Generalization of MOP decomposition in
2D

Here we present a robust way for finding the orientation
parameters that does not require a threshold.

3.1. The case of 3 orientations

First, we demonstrate the general idea for the decompo-
sition for the case of three orientations. In this case the ob-
served signal is modeled as

f(x) = g1(x) + g2(x) + g3(x) (15)



where g1, g2, g3 have orientations u,v,w. The MOP are
given by

cxxx = uxvxwx

cxxy = uxvxwy + uxvywx + uyvxwx

cxyy = uxvywy + uyvxwy + uyvywx

cyyy = uyvywy

(16)

Note that if one of the vectors is known, say w, the prob-
lem reduces to the problem of separating two orientations.
In fact,

cxxx = cxxwx

cxxy = cxxwy + cxywx

cxyy = cxywy + cyywx

cyyy = cyywy

(17)

Note that the matrix B defined by the coefficients in the
right-hand side of the system of equations above is band di-
agonal with the two main diagonals formed by shifted rep-
etitions of w. Therefore, B has full rank, since w is a non-
zero vector. Thus, c2 = (cxx, cxy, cyy) can be recovered,
at least by least squares or singular value decomposition.
Once we have c2, the MOP can be separated either by re-
peating the above reduction scheme or by one of the meth-
ods discussed in Section 2.

Now we proceed to show how one of the orientation
vectors needed in the reduction step can be determined.
By inspecting the first two equations in (16), we note that
the problem is essentially solved if we can determine a =
uxvxwy, b = uxvywx, and c = uyvxwx since

(cxxx, a) = uxvxw

(cxxx, b) = uxwxv

(cxxx, c) = vxwxu

(18)

To find w, for example, we normalize (cxxx, a) to unit
length. This procedure removes the scaling factor uxvx. To
find a, b, c, we build a polynomial having those numbers as
roots. If

Q(z) ≡ (z−a)(z−b)(z−c) ≡ z3−A2z
2+A1z−A0 (19)

then

A2 = cxxy A1 = cxyycxxx A0 = cyyyc
2
xxx . (20)

The three vectors in Equation (18) are the desired orien-
tations, unless one of the orientations is parallel to the
y−axis, i.e., cxxx = 0, and all three represent the ori-
entation w = (0, 1) . For two orientations close to the
y−axis, the three numbers uxvx, uxwx, vxwx may actu-
ally be small and therefore lead to unreliable estimates. To
account for this problem, we compute the vectors

uyvyw, uywyv, vywyu (21)

by using the two last equations in (16). Now, at least one of
the six vectors is reliable since small ux, vx will produce a
large uyvy. We choose the largest vector, assign it to w and
solve Equation (17). The generalization for N orientations
is straightforward as will be shown in the next section.

3.2. The general case of N orientations in 2D

In this, case the observed signal is modeled as

f(x) = g1(x) + · · · + gN (x) (22)

where g1, . . . , gN have orientations

u1 = (u1 x, u1 y), . . . ,uN = (uN x, uN y), (23)

respectively. Let ux j =
∏

i6=j ui x, and aj = uj yux j , for
j = 1, . . . , N, i.e.,

cx···xy = aN + aN−1 + · · · + a1. (24)

The polynomial

Q(z) = zN −AN−1z
N−1 + · · · + (−1)NA0, (25)

that has the parameters aj as roots, must have the coeffi-
cients

AN−1 = cx···xy

AN−2 = cx···yycx···x
...

A0 = cy···yc
N−1
x···x .

(26)

Solving for the roots of QN (z), we find, for each j,

(cx···x, aj) = ux juj (27)

and similarly we find

uy juj . (28)

The hypothesis that the orientations are pairwise distinct as-
sures that at least one ux j is non-zero (the same holds for
uy j). As in the case of three orientations, we choose as uN ,
the largest of the 2N candidates in Equations (27) and (28).

The procedure does not need any threshold parameters.
Nevertheless, to accelerate the separation, we may choose to
threshold |cx···x| by some parameter ε as follows. We sup-
pose |cx···x| ≥ |cy···y| (and reorder the axes if necessary).
If |cx···x| ≥ ε, all the orientations are obtained from Equa-
tion (27). Otherwise we assign to uN the largest vector in
Equation (27), and reduce the problem by one orientation.
By doing so we avoid any fine tuning of threshold parame-
ters. In the next sections, we will describe a particular case
of multiple orientations in 3D. The solution in this particu-
lar case will then lead to a general solution in 3D.



(a) (b) (c) (d)

Figure 2. A real example of multiple transparent motion estimation: the Mona Lisa sequence.

4. Multiple motions and mixed-motion pa-
rameters in 3D

We model two additive superimposed motions by

f(x, t) = g1(x − tu) + g2(x − tv), (29)

with the time variable t. The layers g1(x) and g2(x)
are moving with the velocities u = (ux, uy)T and
v = (vx, vy)T , respectively. The sequences g1(x− tu) and
g2(x − tv) satisfy the optical flow constraints

d

dt
g1(x − tu) = û · ∇g1 = 0

d

dt
g2(x − tv) = v̂ · ∇g2 = 0 ,

(30)

where ∇ = (∂x, ∂y, ∂t) is the gradient operator and û =
(ux, uy, 1)

T and v̂ = (vx, vy, 1)
T are three-dimensional

space-time orientation vectors. These equations state that
the gray levels remain unchanged along the trajectories of
motion. Thus, the directional derivative in direction of mo-
tion must vanish. Evidently, motion analysis is a particular
case of orientation estimation in three dimensional space
with the additional constraint that the temporal components
ut = vt = 1. As in Equation (5), f(x, t) satisfies the con-
straint

∂2f

∂û∂v̂
= cxxfxx + cxyfxy + cxtfxt

+ cyyfyy + cytfyt + cttftt = 0, (31)

with the mixed-motion parameters (MMP)

cxx = uxvx, cyy = uyvy, cxy = (uxvy + uyvx)

cxt = (ux + vx), cyt = (uy + vy), ctt = 1.
(32)

In order to estimate the mixed-motion parameters we can
choose one of the methods proposed in [17, 23]. Then the
nonlinear problem is solved by decomposing the MMP into
the individual motion components.

Decomposition with complex polynomials. A general solu-
tion for an arbitrary number of superimposed motions was
proposed in [17]. We now sketch the idea for the case of
only two motions. The interpretation of motion vectors as
complex numbers v = vx + ivy allows to determine the
motion vectors as the roots of the complex polynomial

Q(z) = (z − u)(z − v) = z2 − (cxt − icyt)z

+ (cxx − cyy + icxy), (33)

whose coefficients are expressed in terms of the MOP. In
the next section we will show how multiple orientations in
3D can be projected to multiple motions and thus be decom-
posed according to Equation (33).

5. Decomposition of the mixed-orientation
parameters in 3D

The model for multiple oriented signals in 3D is the same
as in Equation (22), except that now x and the u’s belong to
the three-dimensional space.

Transforming the MOP to the MMP. We will first reduce
the problem of decomposing the N mixed orientations in
the MOP into an equivalent problem of separating N mixed
motion vectors in the MMP. For simplicity we first consider
the case of two orientations N = 2. By setting u = u1 and
v = u2, the equations for the MOP are

cxx = uxvx

cxy = uxvy + uyvx

cyy = uyvy

cxt = uxvt + utvx

cyt = uyvt + utvy

ctt = utvt .

(34)

First, we reorder the axes to assure |ctt| ≥ |cjj |, j = x, y .
We have ctt 6= 0 if and only if ut vt 6= 0. In this case, we
set ut = vt = 1, and System (34) reduces to System (32),



which is MMP for two motions. Therefore, the orientations
can be separated by solving a second degree complex poly-
nomial. If ctt = 0, we simply apply a random rotation to
the coordinate system, such that the MOP transform accord-
ingly. It follows that in the new coordinate system (x′, y′, t′)
we have ct′t′ 6= 0. The generalization for any number or ori-
entations is straightforward.

Projection in 2D. We will present another approach for the
separation of two orientations in 3D, which will lead to the
general solution for any number of orientations in any di-
mension. Equation (34) reveals that by considering the pairs
(x, y), (y, t) and (x, t), the problem of finding two orienta-
tions in 3D can be split into three problems of finding two
orientations in 2D :

cxx = uxvx

cxy = uxvy + uyvx

cyy = uyvy ,
(35)

cyy = uyvy

cyt = uyvt + utvy

ctt = utvt ,
(36)

and

cxx = uxvx

cxt = uxvt + utvx

ctt = utvt .
(37)

Now, we can benefit from one of the decomposition tech-
niques discussed in Sections 2 and 3 to obtain three pairs of
(unnormalized) vectors

αtut = (ux, uy, 0) and αtvt = (vx, vy, 0) (38)

and

αxmx = (0,my,mt) and αxnx = (0, ny, nt) (39)

We could now use the middle equation in (37) to find the
correspondence, but instead, we proceed to obtain the geo-
metrical insight for the general solution by computing

αyry = (ry, 0, rt) and αysy = (sy, 0, st). (40)

We have now found all the projections of the desired ori-
entations onto the coordinate planes xy, yt and xt. How-
ever, we still have an assignment problem to solve: which
of the computed 2D vectors are projections of u, and which
are projections of v? If we could assume that ut, mx, ry

are projections of u, we could recover u. This assumption,
however, holds if (and only if) the matrix





ux 0 −rx
−uy my 0
0 −mt rt



 (41)

is rank deficient. This means that we can recover the orien-
tations by trying all possible combinations of the vectors in
Equations (38), (39) and (40) until the matrix becomes rank
deficient.

6. Multiple orientations in any dimension

In what follows x = x1e1 + · · · + xpep is a point in
R

p and u1, . . . ,uN are the desired orientations. We com-
pute the following projections of these orientations onto the
planes xpx1, xjxj+1, j = 1, . . . , p− 1 :

u
k
p = uk

1e1 + uk
pep

u
k
j = uk

j ej + uk
j+1ej+1 j = 1, . . . , p− 1.

(42)

k = 1, . . . , N by one the methods discussed in Sections 2
and 3. The sequence of projections u

k(1)
1 , . . . ,u

k(p)
p repre-

sents the same orientation if and only if the matrix
















u
k(1)
1 0 · · · −u

k(p)
1

−u
k(1)
2 u

k(2)
1 · · · 0

0 −u
k(2)
2 · · · 0

...
...

...
0 0 · · · uk(2)

















(43)

is rank deficient. We can, therefore, recover all the orienta-
tions based on all possible sequences u

k(j)
j , j = 1, . . . , p.

7. Examples

In this section, we present some application examples for
multiple motion and orientation analysis.

Figure 1 shows both synthetic and real examples. Re-
sults for orientation estimation at junctions are in the top
and middle rows. Panel (a) depicts a T-junction formed by
two sinusoidal patterns. The estimated orientations for the
marked region are shown in (b) and fit the image orienta-
tions well. Panel (c) depicts an example for X-junctions,
where two sinusoidal patterns are additively superimposed.
The estimated orientations are shown in (d) and comply
well with the individual orientations of the patterns. A real
example is shown in the bottom row. Panel (e) shows an
X-ray projection of a security critical rubber component
of a car. Panel (f) depicts the estimated orientation vec-
tors superimposed for every tenth pixel. Note that the es-
timated orientations fit the orientations in the image well,
and we can distinguish between single- and double-oriented
regions. To compute the MOP, we used the hierarchical
method described in [22] in combination with the decom-
position method in Section 2.

Figure 3 shows an example in which up to three motions
occur. Three additively superimposed textured stripes are



moving in this sequence such that the center frame (a) con-
sists of four quadrants with different numbers of motions:
one with one, two with two and one with three motions.
The arrows in (a) illustrate the number and direction of the
motions for each individual quadrant. Image (b) depicts the
estimated number of motions for each pixel by a color cod:
black means no, dark gray one, gray two and light gray three
motions. The white cross marks the true border of the re-
gions. The estimates are blurred across the borders due to
an integration window (see [17] for further details). The es-
timated motion vectors according to section 4 are shown
(superimposed) in (c). Finally, in Figure 2 we show a re-
sult for the Mona Lisa sequence 1. Image (a) depicts one
frame, for which we compute the motion vectors. In this se-
quence we see the reflection of a box in a glass plate in front
of a poster. The box is moving to the left and the poster to
the right. In the area of the box, we observe two motions,
one for the box and the other for the poster. Panel (b) show
the number of estimated motions at each pixel by a color
code: black no, gray one and white two. The estimated mo-
tion vectors for each layer are shown in (c) and (d), respec-
tively. The MMP were estimated according to the algorithm
proposed in [17].

8. Summary and Conclusions

In this paper we derived a general theory for the estima-
tion of multiple orientations in multidimensional signals.
We first solved the MOP decomposition problem for any
number of orientations in 2D. We then showed how the gen-
eral nD decomposition problem can be reduced to a cascade
of decompositions in 2D. MOP decomposition is obtained
by searching for the roots of a polynomial. The degree of
the polynomial equals the number of orientations. Hence, in
any dimension, the solution is analytical for up to four ori-
entations. For more than four orientations numerical meth-
ods are necessary. The signal superposition model applies
also for multi-spectral images and occlusions, thus making
it applicable to a wide range of problems. Finally, we have
shown application examples for multiple motion and multi-
ple orientation analysis in images. However, we expect that
our solutions will lead to further new kinds of applications.
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A. Effect of rotating the coordinate system on
the MOP

If the orientations are represented by the vectors
u1, . . . ,uN . The MOP are up to scaling factors the compo-
nents of the tensor

C =
1

N !

∑

σ

uσ(1) ⊗ uσ(2) · · · ⊗ uσ(N), (44)

where the sum runs over all permutations σ of 1, . . . , N [21,
16]. The actual relation is

cw = N(w)Cw (45)

where w = w1w2...wN is an ordered word with charac-
ters wj ∈ {1, 2, . . . , N}, Cw are the components of C, and
N(w) is the number of possible words with the same char-
acters as w. If the coordinate system changes by a rotation,
say

x
′ = Rx, (46)

the components of C, and therefore, the MOP rotate accord-
ingly.


