
1

Hand Image Segmentation in Video Sequence by GMM: a comparative
analysis

Hebert Luchetti Ribeiro Adilson Gonzaga
School of Engineering at São Carlos School of Engineering at São Carlos

University of São Paulo -USP University of São Paulo - USP
São Carlos, São Paulo, Brazil São Carlos, São Paulo, Brazil

hebertlr@ig.com.br adilson@sel.eesc.usp.br

Abstract

This paper describes different approaches of real-
time GMM (Gaussian Mixture Method) background
subtraction algorithm using video sequences for hand
image segmentation. In each captured image, the
segmentation takes place where pixels belonging to the
hands are separated from the background based on
background extraction and skin-color segmentation. A
time-adaptive mixture of Gaussians is used to model
the distribution of each pixel color value. For an input
image, every new pixel value is checked, deciding if it
matches with one of the existing Gaussians based on
the distance from the mean in terms of the standard
deviation. The best matching distribution parameters
are updated and its weight is increased. It is assumed
that the values of the background pixels have low
variance and large weight. These matched pixels,
considered as foreground, are compared based on skin
color thresholds. The hands position and other
attributes are tracked by frame. That enables us to
distinguish the hand movement from the background
and other objects in movement, as well as to extract the
information from the movement for dynamic hand
gesture recognition.

1. Introduction

This paper’s main goal is to evaluate the
methodologies that are able to segment hand videos
aiming HCI (Human Computer Interaction)
applications for real-time applications. The hand
gesture recognition application based on computer
vision motivated the research considering that hand
gestures are a natural way for communication among
people, resulting in a more natural way to interact with
the computer. The hand segmentation in video images
is the crucial part of the gesture recognition, because if
it does not segment the object of interest properly,

further analysis would be impossible. Traditionally, the
background subtraction from the current scene is used
for the segmentation. The distress of following this
approach is to build a robust background model for
complex background scenes, formed by different
geometric shapes, textures and colors, illumination
variations, reflections and efficiency for external and
indoor environments. This paper describes the
Gaussian mixture method (GMM) based on the work of
Stauffer and Grimson [1], suitable for hand
segmentation, and compares it with different
approaches of the same algorithm implemented by
Power and Shoonees [3] and KadewTraKuPong and
Bowden [4]. An auxiliary segmentation method that
builds a skin classifier is used. It explicitly defines,
through a number of rules, the boundaries for skin
cluster in a RGB color space [8].

2. Related Work

Stauffer and Grimson [1] used the adaptive

mixture of Gaussian distributions to model each pixel
from background image and a connected component
algorithm to segment the foreground objects. The
model presented by them [1] became very popular and
used in several applications that need background
estimation. However, this model is not totally
adaptable to all different environment conditions
considering the influence caused by shadows,
reflections and foreground objects relatively static or in
high traffic. Some modifications have been proposed
for the original algorithm [1] to solve these matters. An
interesting modification was proposed by Harville et
al. [2], where, besides the color attribute, a new
attribute was added to the mixture of Gaussian
distribution: depth. The new attribute is extracted from
a stereo binocular arrangement that allows the
incorporation of the model shadows and reflections.
Harville et al. [2] have also created a scene activity

2

measurement to manage the speed of the object that is
incorporated to the background model, solving the
problem when the object is almost static or in high
traffic.

KadewTraKuPong and Bowden [4] presented a
method that improves this adaptive background
mixture model [1], reinvestigating the update
equations. They use different equations at different
phases. This allows the system to learn faster and more
accurately, as well as to adapt to changing
environments effectively. This approach updates the
equations derived from sufficient statistics [5] and L-
recent window formula over other approaches of
McKenna et al apud [4]. The model begins to estimate
the Gaussian mixture model using expected sufficient
statistics update equations, then switches to L-recent
window version when the first L samples are
processed. The expected sufficient statistics update
equations provide a good estimate at the beginning
before all L samples are collected. The L-recent
window update equations prioritize recent data,
therefore the tracker can adapt to changes in the
environment.

Power and Schoones [3] suggest approximations
and modifications from the standard algorithm [1] to
improve performance. The modification consists on
replacing the probability density function value by the
weight of distribution in the update equations. Other
approaches different from the one mentioned
previously, have been developed as an alternative to
statistical models, such as Weiner filter [12], Kalman
filter [14], Bayesian decision theory and principal
components analysis (PCA) [13], and Hidden Markov
Models (HMM) [15]. Most of these solutions present
high computational costs when compared to the GMM
and/or worst results for robust background estimation.

3. Background Model Estimation

The basic idea is to define a segmented region,

delimiting the pixels of interest. To do so, it is
necessary to model the color attribute of each pixel of
an image sequence (pixel process) through an adaptive
mixture of Gaussian distributions. The mixture of
Gaussian distribution model is updated for each new
captured observation, reducing the influence from the
past observations and allowing the model adaptation
according to a gradual variation on illumination.
However, the Gaussian distributions represent both
foreground and background. It would be necessary to
define the distribution of the subsets to describe the
background model. The subset definition happens at
each observation, according to the associated weights
of every distribution indicating the frequency that the

distribution better represented the pixel. After the pixel
process, the foreground pixels are submitted to skin
color segmentation. The next task is to find the
separated objects. First, the speckle noise is removed
by morphology (opening and closing) [11], then
connected regions are determined and grouped regions
are separated into objects.

3.1. Pixel-Processing

A mixture of K Gaussian distributions models each

pixel in the scene. The history of pixels can be defined
as a temporal series from these pixel values that are
vectors { }titititi BGRX ,,,, ,,=

G
. For each time t, and

every pixel { }00, yxi = , the history of pixels can be
represented using the equation 3.1:

}11:),,({},,{ 001,1, −≤≤=− tjjyxIXX tii
GG

…
G

 (3.1)

Where I
G

 is the frame sequence. Therefore, the
pixel values are samples of some random
variable tiX ,

G
which includes the behavior of K.

tiX ,
G

may be 1-dimensional (monochrome intensity), 2-
dimensional (normalized color space or intensity-plus-
range), 3-dimensional (color), or D-dimensional in
general (represented as column vectors). The
probability that a certain pixel has a value of tiX ,

G
at the

time t can be written as shown in equation 3.2:

()ktiktiti

K

k
kti

tiiti

X

XXXP

,1,,1,,
1

,1,

1,1,,

,;

),,|(

−−
=

−

−

Σ∗

=

∑ µηω GG

G
…

GG

 (3.2)

Where η is a Gaussian probability density
function, and kti ,1, −ω is the weight parameter of the

thk Gaussian component that indicates the relative
proportions of past observations modeled for every
Gaussian distribution. The kη factor is denoted the

thk Gaussian distribution of a mixture represented
using the equation 3.3.

()
()

()






 −−−

∗=Σ

∑

∑

− −−

−

−−

)(
2
1exp

2

1,,

,1, ,1,,,1,,

2
1

,1,2
,1,,1,,

kti ktiti
T

ktiti

kti
D

ktiktiti

XX

X

µµ

π
µη

GGGG

GG

(3.3)

Where D is the D-dimensional from vector tiX ,
G

. In
this case, D = 3 because the RGB color space was
adopted. kti ,1, −µG and kti ,1, −Σ are the mean-vector and

3

covariance matrix values of the thk Gaussian
component. For computational reasons, the covariance

matrix is assumed to be∑ − −=kti kti I,1,
2

,1,σ . Therefore,
it was established the use of the covariance matrix
as][222

BGRk diag σσσ=Σ , where 222 ,, BGR σσσ are,
respectively, the variances of RGB components. This
assumption allows red, green, and blue pixel values to
be independent and to have the same variances.
Traditionally, the K value is the same for every pixel,
in a range between 3 and 5. When more distributions
are used, the model represents more complex scenes
better. However, it increases the computational costs.
A Gaussian mixture characterizes the distribution of
recently observed values of each pixel in the scene. A
new pixel value can be represented by one of the major
components of the mixture model and used to update
the model. For every new observation, the mixture of
Gaussian distribution used to model the observation
history of each pixel must be updated. Ideally, at each
time step t, the pixel’s mixture of parameters would be
re-estimated applying an exact Expectation
Maximization algorithm [6] on some recent
observation window, including the last one. But this is
a very costly procedure, so Stauffer and Grimson [1]
uses an on-line K-means approximation. The matching
is observed through a distance calculation, normally
Euclidean, and a deviation threshold parameter (β),
among the current observation and the K Gaussian
distributions. The parameter β is typically 2.5, so the
boundary of the matching zone in RGB-space
for kη encompasses over 95% of the data points that
would be drawn from the true Gaussian probability
density. The algorithm integrates the new observed
data into the background model so that every pixel
value of the actual frame, tiX ,

G
, is checked against the

existing K Gaussian distributions.
The pixel is considered as a matched pixel if the

criterion |Xt - µ| ≤ 2.5σ is true for all RGB channels. If
a match is found for some distribution, this one is
updated. In order to do that, the K distributions are
ordered based on the value kσω and the first B
distributions are used as a background model of the
scene where B is estimated using the equation 3.4:








 >= ∑
=

TB
b

K
kib

1
,minarg ω (3.4)

Where the threshold T is the minimum fraction of
the background model. In other words, it is the
minimum prior probability of the background to be in
the scene. If the matched Gaussian component model is
one of any B distributions, the model must be updated.

The prior weights of the K distributions at time t, kti ,,ω ,
are adjusted as the equation 3.5.

ktiktikti M ,,,1,,,)1(αωαω +−= − (3.5)

Where α (0 < α ≤ 1) is the learning rate and the
time constant 1/α defines the speed at� which the
distributions parameters change. Mi,t,k is 1 for the
matched model and 0 for the remaining models. After
this approximation, the weights from both matched and
unmatched models need to be renormalized. kti ,1, −µG ,

kti ,1, −σ are parameters for unmatched distributions that
keep the same value and the parameters of the
distribution that match the new observation are updated
using the equations 3.6 to 3.10:

tiktikti X ,,1,,,)1(ρµρµ +−= −
GG (3.6)

2
,1,,,

2
,1,,

2
,,,)()1(ktiRtiktiRktiR R −− −+−= µρσρσ (3.7)

2
,1,,,

2
,1,,

2
,,,)()1(ktiGtiktiGktiG G −− −+−= µρσρσ (3.8)

2
,1,,,

2
,1,,

2
,,,)()1(ktiBtiktiBktiB B −− −+−= µρσρσ (3.9)

()ktiktitiX ,1,,1,, ,;* −−= σµηαρ GG
 (3.10)

The parameter ρ is the second learning rate
estimated using the equation 3.10. If none of the K
distributions matches that pixel value, the least
probable component is replaced by a new distribution
with a mean equal to the current value of tiX ,

G
, an

initially high variance, and a low weight parameter.

3.2 Skin Color Detection

After the pixel process, the results are submitted to

skin color segmentation only for the pixels considered
as foreground pixels. The defined metric type is
determined by the skin color method. This
segmentation method builds a skin classifier that
defines explicitly, through a number of rules, the
boundaries of skin cluster in some color space model
[9]. According to Peer et al.[8], a pixel is classified as
skin, in RGB color space, if some rules are accepted, as
shown in equation 3.11:

B) (R G) (R 15) |G-R(|
15) B}G,min{R, -B}G,(max{R,

 20) (B 40) (G 95) (R

>∧>∧>
∧>

∧>∧>∧>
 (3.11)

The main advantage of this classifier is the
simplicity of skin threshold rules that builds a very fast
classifier. So the goal of this skin color threshold is to

4

easily discriminate, in real time, the skin color and the
non skin color pixels.

3.3 Noise Cleaning

When the pixel processing and the skin color
threshold are complete, there is a binary image
containing foreground pixels (1’s) and background
pixels (0’s). It is essential that the resulting binary
segmented image is further refined. Since a statistically
significant portion of the input samples will lie in the
tails of the distributions, the output image will
inevitably contain small noise-generated blobs. These
blobs should be eliminated through Gaussian filtering
and simple area threshold that can readily remove
small false blobs. The remaining blobs can then be
cleaned using opening and closing morphological
functions [11].

4. Methodology and Materials

Frames from video sequence are analyzed and pre-

processed. A Gaussian filter with a 5x5 mask must be
applied to each frame to smooth the image. A mixture
of K Gaussian distributions models each pixel to
subtract the background and reach the hand
segmentation. The Stauffer and Grimson [1] GMM
model is used to subtract the background, in the RGB
color space, and it is compared to different approaches
from the same algorithm implemented by Power and
Shoonees [3] and KadewTraKuPong and Bowden [4].

4.1 GMM Algorithm Steps

a. Initializing K Gaussians per Pixel:

Each new Gaussian K is created with the mean,
variance and weight parameters equal to the current
pixel value, the initial high variance and the low initial
weight, respectively (table 1).

b. Checking the Standard Deviation Threshold:

Check if the pixel value (Xt) is within the 2.5
standard deviation of all existing K Gaussian
distributions. Then calculate the standard deviation (σ)
and the mean (µ) of each existing Gaussian to check
the standard deviation criterion. There are different
rules according to each GMM approach:
Stauffer and Grimson [1] use the equation 4.1 and the
equation 4.2 is employed in Power and Schoones [3],
KadewTraKuPong and Bowden [4] methods:

σµσµσµ 5.2||5.2||5.2|| ≤−∧≤−∧≤− BGR BGR (4.1)

2
222

)()()(2.5)(≤






 −+






 −+






 −

B

B

G

G

R

R BGR
σ

µ
σ

µ
σ

µ (4.2)

c. No Matching (Foreground pixel):
No distribution was found among the existing K

Gaussian distributions. The least probable distribution
is replaced with a new distribution using the mean,
variance and weight parameters equal to the current
pixel value, the initial high variance and low initial
weight, respectively. The least probable distribution is
determined by the Gaussian distribution with the
lowest ω/σ value.

d. Matching Found (Background pixel):

When a match is found among the existing K
Gaussian distributions, the Gaussian parameters must
be adjusted. The weights (ω) of all Gaussians are
adjusted. The mean (µ) and the standard deviation (σ)
are updated only for the matched Gaussian, while the
unmatched Gaussians are not changed. The weights,
means and deviations are updated using the equations
3.5 to 3.9. Where ρ is calculated using the equation
3.10 based on Stauffer and Grimson [1] and using the
equation 4.3 based on Power and Schoones [3] and
using the equation 4.4 based on KadewTraKuPong and
Bowden [4].

kti ,,ωαρ = (4.3)
=ρ ()()LN 1,11max +=α (4.4)

Where N is the amount of matched distributions
considered as a background, and L is the limit for the
amount of matched distribution. Before the model
reaches L matched distributions, the update equations
consider α = 1/(N+1). After L distributions, the update
equations consider α = 1/L.

e. Choosing the Background Distribution :

After updating the parameters using the steps
above, sort the Gaussians using ω/σ in descending
order. Choose the first B distributions as a background
model, that is, the sum of their weights (ω) is greater
than T, as indicated in the equation 3.4:

If the matched distribution is one of the first B
distributions, the pixel is classified as a background
pixel. Whether no distribution is found among the
existing K Gaussian distributions or the pixels do not
match any of the first B distributions, the pixel is
classified as a foreground pixel.

5

Table 1. Parameter values used in GMM approaches.

Method K α σ ω T β L
[1] 3 .005 25 .05 .79 2.5 _
[3] 3 .005 30 .05 .7 2.5 _
[4] 4 _ 12 .05 .7 2.5 60

4.2 Materials

The program and the tests were developed to run

with the Microsoft Windows operational system. The
program was implemented in Borland C++ Builder 6.0
programming language. Some OpenCV library
functions [7] were used to obtain contours, image
filters, image conversions, matrix operations,
transpositions, image handle and images visualizations.
OpenCV (Open Source Computer Vision Library) is a
free library for both non-commercial and commercial
use, with functions in C programming language and
C++ classes with the most popular algorithms of
computer vision and image processing. A web cam
captures the video images for a 320x240 color video.
The computer used for development and tests was a PC
AMD Athlon 64 Processor, model 3000, with 1 GB of
RAM memory and 80GB of hard disk.

5. Results

At first, the tests were implemented with adjusted

parameters for each different address of the GMM
algorithm. Some images of these tests, without skin
color threshold, are shown in figures (1, 2) while skin
color threshold images are shown in figure 3. The first
column in figure 1 shows the original frames from a
video sequence. The second and third columns show,
respectively, the GMM segmentation based on [1] and
contour extraction. Figure 2 shows the GMM
segmentation and contour extraction using [3]
approach on the first and second columns, and the [4]
approach on the third and fourth columns. Working
with the adjusted parameters for each GMM different
addresses (table 1), the approach of [1] achieves a
higher amount of background pixels, but it detects
more background false positives than the other
methods. This result produces a lot more holes and
deformed contours.

The method [3] obtains better-defined shapes for the
foreground pixels during the segmentation and
therefore it provides better contours, but it detects more
background pixels as foreground pixels in some
situations. In [1], foreground objects that remain
relatively static are slowly incorporated into the
background model or they disappear completely.
Meanwhile, in [3], they are quickly incorporated into
the background model, because the simplifications on

the update equations speed up the adaptive process of
the algorithm.

Figure 1. Frame, segmentation using [1] and contour on

the first, second and third columns respectively.

Figure 2. GMM segmentation and contour extraction
using [3] on the first and second columns, respectively,

and using [4] on the third and fourth columns.

The [4] results are not satisfactory, mainly because
of the segmentation continuity when a lot of hand
images are detected as background. Thus, this
determines that it is difficult to get a good hand
contour. Mistakes occur after the first L samples are
processed when the algorithm switches to L-recent
window version for updating equations. In this switch,
the segmentation basically does not happen. Probably,
the L-recent value is too small in our tests; according
to the authors [4] it should use around 500 frames. We
use 60 frames for our application that can not wait for
so many frames in the learning phase, since the
segmentation works in real time, and this could be

6

causing the problem. The same test was executed, but
now using skin color threshold and figure 3 presents
the original frames and the GMM segmentation
processed using [1] on the second column, using [3] on
the third column and using [4] on the fourth column.

Figure 3. Original images on the first column, GMM
segmentation and skin color threshold using: [1] on the

second column, [3] on the third column and [4] on fourth
column.

The results using skin color threshold (figure 3) are
very close to those three proposals. [3] reaches a
slightly better performance providing the most filled
hand areas and, consequently, better contours. This
threshold corrects many of the GMM segmentation
mistakes for all three approaches. The skin color
checking is applied only for the pixels considered as
foreground. It reduces the computational cost,
considering that the number of pixels to be checked is
smaller than the entire image. The second phase on the
test process consists of using the same parameters
values presented in table 2 for the three proposals.

Table 2. The initial parameter values.

Parameters K α σ ω T β L
Values 3 .005 12 .05 .79 2.5 60

Again, [3] reaches the best performance, visually in

terms of segmentation (figure 4). For [1], some large
hand regions are segmented and there are also traces on
the way where the hand passes. For [4], a lot of
background areas are incorporated to the foreground
segmentation. The different results between the GMM
algorithm addresses using the noise cleaning and skin
color threshold and not using them need to be
accentuated. The pixel process generates a large
number of pixel classification mistakes originated from
shadows, reflections and static objects that can be

corrected or attenuated by noise cleaning and skin
color threshold.

Figure 4. GMM segmentation using the same parameters
values for [1] (first column), [3] (second column) and [4]

(third column).

For a 320x240 color video with 9944 frames, the
GMM methods [1, 3, 4] with K=3 models were tested,
comparing the time processing using the same initials
parameters shown on table 2. First, the GMM method
without post-processing, skin threshold and tracking
was used. The results are shown on the last three
columns of table 3, for the three propositions [1, 3, 4].

The results presented on the first three columns of
table 3 show that the frame rate reaches an average of
10.05 fps by [1], an average of 9.91 fps by [3] and an
average of 10.63 fps by [4]. The GMM method test
using only post-processing and tracking presents the
results shown on the first, second and third columns of
table 3. The frame rate reaches an average of 8.83 fps
by [1], an average of 8.53 fps by [3] and an average of
9.17 fps by [4]. The last test was used the GMM
method with post-processing, skin threshold and
tracking. The results presented on the fourth, fifth and
sixth columns of table 3 show that the frame rate
reaches an average of 8.91 fps by [1], an average of
8.59 fps by [3] and an average of 9.22 fps by [4].

The results achieved by [4] have the best
performance in terms of time processing, followed by
[1] and [3]. The three tests show that [4] has the
quickest average. Figures 5, 6 and 7 show the charts of
the amount of frames per second (fps) indicating the
performance of the three methods: without post-
processing, skin threshold and tracking; with post-
processing and tracking; and with post-processing, skin
threshold and tracking, respectively. The test processed
9994 frames of the same video for the three proposals
where the red line represents the results obtained by

7

[1], the blue line represents the results obtained by [3]
and the green line represents the results obtained by
[4].

Frame Rate (fps)
Without post-processing

9

9,2

9,4

9,6

9,8

10

10,2

10,4

10,6

10,8

11

second

fr
am

es Stauffer and Grimson
Power and Schoones
TraKuPong and Bowden

Figure 5. The amount of frames per second indicating the

performance of the three methods without post-
processing and skin threshold.

Frame Rate (fps)
With post-processing

7
7,2
7,4
7,6
7,8

8
8,2
8,4
8,6
8,8

9
9,2
9,4

second

fr
am

es Stauffer and Grimson
Power and Schoones
TraKuPong and Bowden

Figure 6. The amount of frames per second indicating the
performance of the three methods with post-processing

but without skin threshold.

These charts confirm that [4] method has the best
performance in terms of time processing. It is slower
than the others [1, 3] at the beginning but it becomes
quicker after a number of frames are processed. This
fact is due to the algorithm spending an amount of
frames to the system to learn more accurately. In our
test, this learning phase (sixty frames) is slower than
the other methods [1, 3] in spite of the authors [4]
describing that the learning phase would be faster.
Most of the time, [1] approach is faster than [3]. This
happens because the calculation from [1] considers that
red, green, and blue pixel values are independent and
have the same variances, decreasing the computational
efforts. In [3], the variance is calculated for each pixel
component.

Frame Rate (fps)
With post-process./skin detection

7,7
7,9
8,1
8,3
8,5
8,7
8,9
9,1
9,3
9,5

second

fr
am

es Stauffer and Grimson
Power and Schoones
TraKuPong and Bowden

Figure 7. The amount of frames per second indicating the
performance of the three methods with post-processing

and skin threshold.

Table 3. Frame rates using GMM approaches on a video.
The values are shown with post-processing; with post-

processing, skin threshold; and without post-processing.

 Post-process Post-
process./skin

No post-
process.

GMM [1] [3] [4] [1] [3] [4] [1] [3] [4]
Avg 8.83 8.53 9.17 8.91 8.59 9.22 10.05 9. 91 10.63
Best 9.17 8.91 9.49 9.22 8.98 9.52 10.42 10.35 10.98
Worst 8.18 7.38 8.21 8.29 7.92 8.24 9.30 9.22 9.24

6. Conclusions

This paper’s main interest application is the hand

segmentation as a preparation for gesture recognition.
Therefore, the method [4] is not viable to this kind of
application due to problems with segmentation in real
time using the L-recent frames. The application can
not wait so many frames in the learning phase due to
the real time proposal, despite the chart results (figures
5, 6, 7) showing that the method [4] have the best
performance in terms of time processing. An
interesting fact is that the authors [4] describe that the
learning phase would be faster. Comparing the three
approaches during the tests using specific parameter
values for each one, [3] reached the best background
subtraction results, mainly due to segmentation results
than in terms of time processing, since it had the worst
performance. There are more homogeneous images
with fewer holes determining more continuous
contours on the hand images. For the tests using skin
color threshold, all addresses had closer results, in
terms of segmentation quality. Most of the time, [1]
address is faster than [3] but visually the segmentation
is not so good as the second one [2]. This happens
because the calculation from [1] considers that red,
green, and blue pixel values are independent and have
the same variances, decreasing the computational
efforts but also achieving more mistakes. In [3] the
variance is calculated for each pixel component, and
therefore it can obtain more accurate results.

8

The use of techniques with low computational cost
and real time requirements are considered and adopted
to emphasize the feasibility of this process for practical
applications. We intend to use pixel-processing
feedback by generating supervised classification, with
the capacity to detect classification errors and to
readjust the model of Gaussian distributions. It also
intends to use the YCbCr color space that can be
directly equated to the RGB color space. This color
space separates the luminance from the chromatic
components and it provides an attractive representation
form of colors when desiring to work with a skin color
modeling. The YCbCr color space has presented better
results for the GMM algorithm than the RGB color
space, even the normalized [2, 10].

References

[1] C. Stauffer, and W. E. L. Grimson, “Adaptive
background mixture models for real-time tracking”, In:
Proceedings 1999 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat. No
PR00149), IEEE Comput. Soc. Part vol. 2, 1999.

[2] M. Harville, G. Gordon, and J. Woodfill.
”Foreground segmentation using adaptive mixture
models in color and depth”, In: Proceedings of the
IEEE Workshop on Detection and Recognition of
Events in Video, 2001.

[3] P. W. Power, and J. A. Schoones. "Understanding
Background Mixture Models for Foreground Segmentation",
In: Proceedings Image and Vision Computing New Zealand,
University of Auckland, Auckland, New Zealand, 2002, pp.
267-271. Available on line at:
http://www.is.irl.cri.nz/pubdoc/2002/JSPP2002.pdf.

[4] P. KadewTraKuPong, and R. Bowden, "An improved
adaptive background mixture model for real-time tracking
with shadow detection", In: Proc. 2nd European Workshop
on Advanced Video-Based Surveillance Systems, 2001.
Available on line at: http://www.ee.surrey.ac.uk/Personal/
R.Bowden/publications/avbs01/avbs01.pdf.

[5] N. Friedman, and S. Russell, “Image Segmentation in
Video Sequences: A Probabilistic Approach”, In: The
Thirteenth Conference on Uncertainty in Artificial
Intelligence. Brown University, Providence, Rhode Island,
USA: Morgan Kaufmann Publishers, Inc., San Francisco,
1997.

[6] A. Dempster, N. Laird, and D. Rubin, “Maximum
Likelihood from Incomplete Data via the EM algorithm”, In:
J. Royal Statistical Soc., 1977, vol. 39 (Series B), pp. 1-38.

[7] Intel. OpenCV Open Source Computer Vision Library,
2006. Available on line at:
http://www.intel.com/research/mrl/research/opencv/

[8] P. Peer, J. Kovac, J. and F. Solina, ”Human skin colour
clustering for face detection”, In: submitted to EUROCON –
International Conference on Computer as a Tool , 2003.

[9] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A survey
on pixel-based skin color detection techniques”, In:
GraphiCon, Moscow, Russia, 2003.

[10] S. L. Phung, A. Bouzerdoum, and D.Chai, “A novel skin
color model in ycbcr color space and its application to human
face detection”, In: IEEE International Conference on Image
Processing (ICIP’2002), 2002, vol. 1, pp. 289–292.

[11] Gonzalez, R. C., and Woods, R. E., Digital Image
Processing, Addison-Wesley Publishing Company, 1993.

[12] D. Koller, J. Weber, T. Huang, and J. Malik, G.
Ogasawara, B. Rao and S. Russell, “Towards robust
automatic traffic scene analysis in real-time”, In: Proceedings
of the 33rd IEEE Conference on Decision and Control (Cat.
No.94CH34603). IEEE. Part vol.4, 1994.

[13] B. Henrik, B. M. Thomas, and B. M. Claus, “Real-time
recognition of hand alphabet gestures using principal
component analysis”, In: 10th Scandinavian Conference on
Image Analysis, Lappeenranta, Finland, 1997.

[14] R. G. Brown, and P. Y. C. Hwang, “Introduction to
Random Signals and Applied Kalman Filtering”, In: 2nd
Edition, John Wiley & Sons, Inc, 1992.

[15] T. Starner, J. Weaver, and A. Pentland, “Real-time
American sign language recognition using desk and wearable
computer based video”, In: IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1998, vol.20 (Series 12):
pp. 1371–1375.

