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Abstract 
 

This paper describes different approaches of real-
time GMM (Gaussian Mixture Method) background 
subtraction algorithm using video sequences for hand 
image segmentation. In each captured image, the 
segmentation takes place where pixels belonging to the 
hands are separated from the background based on 
background extraction and skin-color segmentation. A 
time-adaptive mixture of Gaussians is used to model 
the distribution of each pixel color value. For an input 
image, every new pixel value is checked, deciding if it 
matches with one of the existing Gaussians based on 
the distance from the mean in terms of the standard 
deviation. The best matching distribution parameters 
are updated and its weight is increased. It is assumed 
that the values of the background pixels have low 
variance and large weight. These matched pixels, 
considered as foreground, are compared based on skin 
color thresholds. The hands position and other 
attributes are tracked by frame. That enables us to 
distinguish the hand movement from the background 
and other objects in movement, as well as to extract the 
information from the movement for dynamic hand 
gesture recognition. 
 
1. Introduction 
 

This paper’s main goal is to evaluate the 
methodologies that are able to segment hand videos 
aiming HCI (Human Computer Interaction) 
applications for real-time applications. The hand 
gesture recognition application based on computer 
vision motivated the research considering that hand 
gestures are a natural way for communication among 
people, resulting in a more natural way to interact with 
the computer. The hand segmentation in video images 
is the crucial part of the gesture recognition, because if 
it does not segment the object of interest properly, 

further analysis would be impossible. Traditionally, the 
background subtraction from the current scene is used 
for the segmentation. The distress of following this 
approach is to build a robust background model for 
complex background scenes, formed by different 
geometric shapes, textures and colors, illumination 
variations, reflections and efficiency for external and 
indoor environments. This paper describes the 
Gaussian mixture method (GMM) based on the work of 
Stauffer and Grimson [1], suitable for hand 
segmentation, and compares it with different 
approaches of the same algorithm implemented by 
Power and Shoonees [3] and KadewTraKuPong and 
Bowden [4]. An auxiliary segmentation method that 
builds a skin classifier is used. It explicitly defines, 
through a number of rules, the boundaries for skin 
cluster in a RGB color space [8].  

 
2. Related Work 

 
Stauffer and Grimson [1] used the adaptive 

mixture of Gaussian distributions to model each pixel 
from background image and a connected component 
algorithm to segment the foreground objects. The 
model presented by them [1] became very popular and 
used in several applications that need background 
estimation. However, this model is not totally 
adaptable to all different environment conditions 
considering the influence caused by shadows, 
reflections and foreground objects relatively static or in 
high traffic. Some modifications have been proposed 
for the original algorithm [1] to solve these matters. An 
interesting modification was proposed by Harville et 
al. [2], where, besides the color attribute, a new 
attribute was added to the mixture of Gaussian 
distribution: depth. The new attribute is extracted from 
a stereo binocular arrangement that allows the 
incorporation of the model shadows and reflections. 
Harville et al. [2] have also created a scene activity 
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measurement to manage the speed of the object that is 
incorporated to the background model, solving the 
problem when the object is almost static or in high 
traffic. 

KadewTraKuPong and Bowden [4] presented a 
method that improves this adaptive background 
mixture model [1], reinvestigating the update 
equations. They use different equations at different 
phases. This allows the system to learn faster and more 
accurately, as well as to adapt to changing 
environments effectively. This approach updates the 
equations derived from sufficient statistics [5] and L-
recent window formula over other approaches of 
McKenna et al apud [4]. The model begins to estimate 
the Gaussian mixture model using expected sufficient 
statistics update equations, then switches to L-recent 
window version when the first L samples are 
processed. The expected sufficient statistics update 
equations provide a good estimate at the beginning 
before all L samples are collected. The L-recent 
window update equations prioritize recent data, 
therefore the tracker can adapt to changes in the 
environment. 

Power and Schoones [3] suggest approximations 
and modifications from the standard algorithm [1] to 
improve performance. The modification consists on 
replacing the probability density function value by the 
weight of distribution in the update equations. Other 
approaches different from the one mentioned 
previously, have been developed as an alternative to 
statistical models, such as Weiner filter [12], Kalman 
filter [14], Bayesian decision theory and principal 
components analysis (PCA) [13], and Hidden Markov 
Models (HMM) [15]. Most of these solutions present 
high computational costs when compared to the GMM 
and/or worst results for robust background estimation. 
 
3. Background Model Estimation 

 
The basic idea is to define a segmented region, 

delimiting the pixels of interest. To do so, it is 
necessary to model the color attribute of each pixel of 
an image sequence (pixel process) through an adaptive 
mixture of Gaussian distributions. The mixture of 
Gaussian distribution model is updated for each new 
captured observation, reducing the influence from the 
past observations and allowing the model adaptation 
according to a gradual variation on illumination. 
However, the Gaussian distributions represent both 
foreground and background. It would be necessary to 
define the distribution of the subsets to describe the 
background model. The subset definition happens at 
each observation, according to the associated weights 
of every distribution indicating the frequency that the 

distribution better represented the pixel. After the pixel 
process, the foreground pixels are submitted to skin 
color segmentation.  The next task is to find the 
separated objects. First, the speckle noise is removed 
by morphology (opening and closing) [11], then 
connected regions are determined and grouped regions 
are separated into objects. 

 
3.1. Pixel-Processing 

 
A mixture of K Gaussian distributions models each 

pixel in the scene. The history of pixels can be defined 
as a temporal series from these pixel values that are 
vectors { }titititi BGRX ,,,, ,,=

G
. For each time t, and 

every pixel { }00, yxi = , the history of pixels can be 
represented using the equation 3.1: 
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Where I
G

 is the frame sequence. Therefore, the 
pixel values are samples of some random 
variable tiX ,

G
which includes the behavior of K. 

tiX ,
G

may be 1-dimensional (monochrome intensity), 2-
dimensional (normalized color space or intensity-plus-
range), 3-dimensional (color), or D-dimensional in 
general (represented as column vectors). The 
probability that a certain pixel has a value of tiX ,

G
at the 

time t can be written as shown in equation 3.2: 
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Where η   is a Gaussian probability density 
function, and kti ,1, −ω  is the weight parameter of the 

thk  Gaussian component that indicates the relative 
proportions of past observations modeled for every 
Gaussian distribution. The kη  factor is denoted the  

thk  Gaussian distribution of a mixture represented 
using the equation 3.3. 
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Where D is the D-dimensional from vector tiX ,
G

. In 
this case, D = 3 because the RGB color space was 
adopted. kti ,1, −µG  and  kti ,1, −Σ  are the mean-vector and 
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covariance matrix values of the thk  Gaussian 
component. For computational reasons, the covariance 

matrix is assumed to be∑ − −=kti kti I,1,
2

,1,σ . Therefore, 
it was established the use of the covariance matrix 
as ][ 222

BGRk diag σσσ=Σ , where 222 ,, BGR σσσ   are, 
respectively, the variances of RGB components. This 
assumption allows red, green, and blue pixel values to 
be independent and to have the same variances. 
Traditionally, the K value is the same for every pixel, 
in a range between 3 and 5. When more distributions 
are used, the model represents more complex scenes 
better. However, it increases the computational costs. 
A Gaussian mixture characterizes the distribution of 
recently observed values of each pixel in the scene. A 
new pixel value can be represented by one of the major 
components of the mixture model and used to update 
the model. For every new observation, the mixture of 
Gaussian distribution used to model the observation 
history of each pixel must be updated. Ideally, at each 
time step t, the pixel’s mixture of parameters would be 
re-estimated applying an exact Expectation 
Maximization algorithm [6] on some recent 
observation window, including the last one. But this is 
a very costly procedure, so Stauffer and Grimson [1] 
uses an on-line K-means approximation. The matching 
is observed through a distance calculation, normally 
Euclidean, and a deviation threshold parameter (β), 
among the current observation and the K Gaussian 
distributions. The parameter β is typically 2.5, so the 
boundary of the matching zone in RGB-space 
for kη encompasses over 95% of the data points that 
would be drawn from the true Gaussian probability 
density. The algorithm integrates the new observed 
data into the background model so that every pixel 
value of the actual frame, tiX ,

G
, is checked against the 

existing K Gaussian distributions.  
The pixel is considered as a matched pixel if the 

criterion |Xt - µ| ≤ 2.5σ is true for all RGB channels. If 
a match is found for some distribution, this one is 
updated. In order to do that, the K distributions are 
ordered based on the value kσω  and the first B 
distributions are used as a background model of the 
scene where B is estimated using the equation 3.4: 
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Where the threshold T is the minimum fraction of 
the background model. In other words, it is the 
minimum prior probability  of the background to be  in 
the scene. If the matched Gaussian component model is 
one of any B distributions, the model must be updated. 

The prior weights of the K distributions at time t, kti ,,ω , 
are adjusted as the equation 3.5. 
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Where α (0 < α ≤ 1) is the learning rate and the 
time constant 1/α defines the speed at� which the 
distributions parameters change. Mi,t,k is 1 for the 
matched model and 0 for the remaining models. After 
this approximation, the weights from both matched and 
unmatched models need to be renormalized. kti ,1, −µG , 

kti ,1, −σ  are parameters for unmatched distributions that 
keep the same value and the parameters of the 
distribution that match the new observation are updated 
using the equations 3.6 to 3.10: 
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The parameter ρ  is the second learning rate 
estimated using the equation 3.10. If none of the K 
distributions matches that pixel value, the least 
probable component is replaced by a new distribution 
with a mean equal to the current value of tiX ,

G
, an 

initially high variance, and a low weight parameter.  
 
3.2 Skin Color Detection 

 
After the pixel process, the results are submitted to 

skin color segmentation only for the pixels considered 
as foreground pixels. The defined metric type is 
determined by the skin color method. This 
segmentation method builds a skin classifier that 
defines explicitly, through a number of rules, the 
boundaries of skin cluster in some color space model 
[9]. According to Peer et al.[8], a pixel is classified as 
skin, in RGB color space, if some rules are accepted, as 
shown in equation 3.11: 
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         (3.11) 

 

The main advantage of this classifier is the 
simplicity of skin threshold rules that builds a very fast 
classifier. So the goal of this skin color threshold is to 
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easily discriminate, in real time, the skin color and the 
non skin color pixels. 
 
3.3 Noise Cleaning 
 

When the pixel processing and the skin color 
threshold are complete, there is a binary image 
containing foreground pixels (1’s) and background 
pixels (0’s). It is essential that the resulting binary 
segmented image is further refined. Since a statistically 
significant portion of the input samples will lie in the 
tails of the distributions, the output image will 
inevitably contain small noise-generated blobs. These 
blobs should be eliminated through Gaussian filtering 
and simple area threshold that can readily remove 
small false blobs. The remaining blobs can then be 
cleaned using opening and closing morphological 
functions [11]. 

 
4. Methodology and Materials 

 
Frames from video sequence are analyzed and pre-

processed. A Gaussian filter with a 5x5 mask must be 
applied to each frame to smooth the image. A mixture 
of K Gaussian distributions models each pixel to 
subtract the background and reach the hand 
segmentation. The Stauffer and Grimson [1] GMM 
model is used to subtract the background, in the RGB 
color space, and it is compared to different approaches 
from the same algorithm implemented by Power and 
Shoonees [3] and KadewTraKuPong and Bowden [4]. 

 

4.1 GMM Algorithm Steps 
 
a. Initializing K Gaussians per Pixel:  

Each new Gaussian K is created with the mean, 
variance and weight parameters equal to the current 
pixel value, the initial high variance and the low initial 
weight, respectively  (table 1). 

 
b. Checking the Standard Deviation Threshold:  

Check if the pixel value (Xt) is within the 2.5 
standard deviation of all existing K Gaussian 
distributions. Then calculate the standard deviation (σ) 
and the mean (µ) of each existing Gaussian to check 
the standard deviation criterion. There are different 
rules according to each GMM approach: 
Stauffer and Grimson [1] use the equation 4.1 and the 
equation 4.2 is employed in Power and Schoones [3], 
KadewTraKuPong and Bowden  [4] methods:  
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c. No Matching  (Foreground pixel):  
No distribution was found among the existing K 

Gaussian distributions. The least probable distribution 
is replaced with a new distribution using the mean, 
variance and weight parameters equal to the current 
pixel value, the initial high variance and low initial 
weight, respectively. The least probable distribution is 
determined by the Gaussian distribution with the 
lowest ω/σ value. 

 
d. Matching Found (Background pixel):  

When a match is found among the existing K 
Gaussian distributions, the Gaussian parameters must 
be adjusted. The weights (ω) of all Gaussians are 
adjusted. The mean (µ) and the standard deviation (σ) 
are updated only for the matched Gaussian, while the 
unmatched Gaussians are not changed. The weights, 
means and deviations are updated using the equations 
3.5 to 3.9. Where ρ  is calculated using the equation 
3.10 based on Stauffer and Grimson [1] and using the 
equation 4.3 based on Power and Schoones [3] and 
using the equation 4.4 based on KadewTraKuPong and 
Bowden [4]. 
 

kti ,,ωαρ =        (4.3) 
=ρ ( )( )LN 1,11max +=α            (4.4) 

 

Where N is the amount of matched distributions 
considered as a background, and L is the limit for the 
amount of matched distribution. Before the model 
reaches L matched distributions, the update equations 
consider α  = 1/(N+1). After L distributions, the update 
equations consider α  = 1/L. 

 
e. Choosing the Background Distribution :  

After updating the parameters using the steps 
above, sort the Gaussians using ω/σ in descending 
order.  Choose the first B distributions as a background 
model, that is, the sum of their weights (ω) is greater 
than T, as indicated in the equation 3.4: 

If the matched distribution is one of the first B 
distributions, the pixel is classified as a background 
pixel. Whether no distribution is found among the 
existing K Gaussian distributions or the pixels do not 
match any of the first B distributions, the pixel is 
classified as a foreground pixel. 
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Table 1. Parameter values used in GMM approaches. 

Method K α σ ω T β L 
[1] 3 .005 25 .05 .79 2.5 _ 
[3] 3 .005 30 .05 .7 2.5 _ 
[4] 4 _ 12 .05 .7 2.5 60 

 
4.2 Materials 

 
The program and the tests were developed to run 

with the Microsoft Windows operational system. The 
program was implemented in Borland C++ Builder 6.0 
programming language. Some OpenCV library 
functions [7] were used to obtain contours, image 
filters, image conversions, matrix operations, 
transpositions, image handle and images visualizations. 
OpenCV (Open Source Computer Vision Library) is a 
free library for both non-commercial and commercial 
use, with functions in C programming language and 
C++ classes with the most popular algorithms of 
computer vision and image processing. A web cam 
captures the video images for a 320x240 color video. 
The computer used for development and tests was a PC 
AMD Athlon 64 Processor, model 3000, with 1 GB of 
RAM memory and 80GB of hard disk.  

 
5. Results 

 
At first, the tests were implemented with adjusted 

parameters for each different address of the GMM 
algorithm. Some images of these tests, without skin 
color threshold, are shown in figures (1, 2) while skin 
color threshold images are shown in figure 3. The first 
column in figure 1 shows the original frames from a 
video sequence. The second and third columns show, 
respectively, the GMM segmentation based on [1] and 
contour extraction. Figure 2 shows the GMM 
segmentation and contour extraction using [3] 
approach on the first and second columns, and the [4] 
approach on the third and fourth columns. Working 
with the adjusted parameters for each GMM different 
addresses (table 1), the approach of [1] achieves a 
higher amount of background pixels, but it detects 
more background false positives than the other 
methods. This result produces a lot more holes and 
deformed contours.  

The method [3] obtains better-defined shapes for the 
foreground pixels during the segmentation and 
therefore it provides better contours, but it detects more 
background pixels as foreground pixels in some 
situations. In [1], foreground objects that remain 
relatively static are slowly incorporated into the 
background model or they disappear completely. 
Meanwhile, in [3], they are quickly incorporated into 
the background model, because the simplifications on 

the update equations speed up the adaptive process of 
the algorithm.  

 

   

   

   

   
Figure 1. Frame, segmentation using [1] and contour on 

the first, second and third columns respectively. 

Figure 2. GMM segmentation and contour extraction 
using [3] on the first and second columns, respectively, 

and using [4] on the third and fourth columns. 

The [4] results are not satisfactory, mainly because 
of the segmentation continuity when a lot of hand 
images are detected as background. Thus, this 
determines that it is difficult to get a good hand 
contour. Mistakes occur after the first L samples are 
processed when the algorithm switches to L-recent 
window version for updating equations. In this switch, 
the segmentation basically does not happen. Probably, 
the L-recent value is too small in our tests; according 
to the authors [4] it should use around 500 frames. We 
use 60 frames for our application that can not wait for 
so many frames in the learning phase, since the 
segmentation works in real time, and this could be 
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causing the problem. The same test was executed, but 
now using skin color threshold and figure 3 presents 
the original frames and the GMM segmentation 
processed using [1] on the second column, using [3] on 
the third column and using [4] on the fourth column. 

 

Figure 3. Original images on the first column, GMM 
segmentation and skin color threshold using: [1] on the 

second column, [3] on the third column and [4] on fourth 
column. 

The results using skin color threshold (figure 3) are 
very close to those three proposals. [3] reaches a 
slightly better performance providing the most filled 
hand areas and, consequently, better contours. This 
threshold corrects many of the GMM segmentation 
mistakes for all three approaches. The skin color 
checking is applied only for the pixels considered as 
foreground. It reduces the computational cost, 
considering that the number of pixels to be checked is 
smaller than the entire image. The second phase on the 
test process consists of using the same parameters 
values presented in table 2 for the three proposals.  

Table 2. The initial parameter values. 

Parameters K α σ ω T β L 
Values 3 .005 12 .05 .79 2.5 60 

 
Again, [3] reaches the best performance, visually in 

terms of segmentation (figure 4). For [1], some large 
hand regions are segmented and there are also traces on 
the way where the hand passes. For [4], a lot of 
background areas are incorporated to the foreground 
segmentation. The different results between the GMM 
algorithm addresses using the noise cleaning and skin 
color threshold and not using them need to be 
accentuated. The pixel process generates a large 
number of pixel classification mistakes originated from 
shadows, reflections and static objects that can be 

corrected or attenuated by noise cleaning and skin 
color threshold. 

 

Figure 4. GMM segmentation using the same parameters 
values for [1] (first column), [3] (second column) and [4] 

(third column). 

For a 320x240 color video with 9944 frames, the 
GMM methods [1, 3, 4] with K=3 models were tested, 
comparing the time processing using the same initials 
parameters shown on table 2. First, the GMM method 
without post-processing, skin threshold and tracking 
was used. The results are shown on the last three 
columns of table 3, for the three propositions [1, 3, 4]. 

The results presented on the first three columns of 
table 3 show that the frame rate reaches an average of 
10.05 fps by [1], an average of 9.91 fps by [3] and an 
average of 10.63 fps by [4]. The GMM method test 
using only post-processing and tracking presents the 
results shown on the first, second and third columns of 
table 3. The frame rate reaches an average of 8.83 fps 
by [1], an average of 8.53 fps by [3] and an average of 
9.17 fps by [4]. The last test was used the GMM 
method with post-processing, skin threshold and 
tracking. The results presented on the fourth, fifth and 
sixth columns of table 3 show that the frame rate 
reaches an average of 8.91 fps by [1], an average of 
8.59 fps by [3] and an average of 9.22 fps by [4]. 

The results achieved by [4] have the best 
performance in terms of time processing, followed by 
[1] and [3]. The three tests show that [4] has the 
quickest average. Figures 5, 6 and 7 show the charts of 
the amount of frames per second (fps) indicating the 
performance of the three methods: without post-
processing, skin threshold and tracking; with post-
processing and tracking; and with post-processing, skin 
threshold and tracking, respectively. The test processed 
9994 frames of the same video for the three proposals 
where the red line represents the results obtained by 
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[1], the blue line represents the results obtained by [3] 
and the green line represents the results obtained by 
[4].  

Frame Rate (fps)
Without post-processing
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Figure 5. The amount of frames per second indicating the 

performance of the three methods without post-
processing and skin threshold. 

Frame Rate (fps)
With post-processing
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Figure 6. The amount of frames per second indicating the 
performance of the three methods with post-processing 

but without skin threshold. 
 

These charts confirm that [4] method has the best 
performance in terms of time processing. It is slower 
than the others [1, 3] at the beginning but it becomes 
quicker after a number of frames are processed. This 
fact is due to the algorithm spending an amount of 
frames to the system to learn more accurately. In our 
test, this learning phase (sixty frames) is slower than 
the other methods [1, 3] in spite of the authors [4] 
describing that the learning phase would be faster. 
Most of the time, [1] approach is faster than [3]. This 
happens because the calculation from [1] considers that 
red, green, and blue pixel values are independent and 
have the same variances, decreasing the computational 
efforts. In [3], the variance is calculated for each pixel 
component. 

Frame Rate (fps)
With post-process./skin detection

7,7
7,9
8,1
8,3
8,5
8,7
8,9
9,1
9,3
9,5

second

fr
am

es Stauffer and Grimson
Power and Schoones
TraKuPong and Bowden

Figure 7. The amount of frames per second indicating the 
performance of the three methods with post-processing 

and skin threshold. 

Table 3. Frame rates using GMM approaches on a video. 
The values are shown with post-processing; with post-

processing, skin threshold; and without post-processing. 

 Post-process Post-
process./skin 

No post-
process. 

GMM [1] [3] [4] [1] [3] [4] [1] [3] [4] 
Avg  8.83 8.53 9.17 8.91 8.59 9.22 10.05 9. 91 10.63
Best  9.17 8.91 9.49 9.22 8.98 9.52 10.42 10.35 10.98
Worst  8.18 7.38 8.21 8.29 7.92 8.24 9.30 9.22 9.24

 

6. Conclusions 
 
This paper’s main interest application is the hand 

segmentation as a preparation for gesture recognition. 
Therefore, the method [4] is not viable to this kind of 
application due to problems with segmentation in real 
time using the L-recent frames.  The application can 
not wait so many frames in the learning phase due to 
the real time proposal, despite the chart results (figures 
5, 6, 7) showing that the method [4] have the best 
performance in terms of time processing. An 
interesting fact is that the authors [4] describe that the 
learning phase would be faster. Comparing the three 
approaches during the tests using specific parameter 
values for each one, [3] reached the best background 
subtraction results, mainly due to segmentation results 
than in terms of time processing, since it had the worst 
performance. There are more homogeneous images 
with fewer holes determining more continuous 
contours on the hand images. For the tests using skin 
color threshold, all addresses had closer results, in 
terms of segmentation quality. Most of the time, [1] 
address is faster than [3] but visually the segmentation 
is not so good as the second one [2]. This happens 
because the calculation from [1] considers that red, 
green, and blue pixel values are independent and have 
the same variances, decreasing the computational 
efforts but also achieving more mistakes. In [3] the 
variance is calculated for each pixel component, and 
therefore it can obtain more accurate results.   
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The use of techniques with low computational cost 
and real time requirements are considered and adopted 
to emphasize the feasibility of this process for practical 
applications. We intend to use pixel-processing 
feedback by generating supervised classification, with 
the capacity to detect classification errors and to 
readjust the model of Gaussian distributions. It also 
intends to use the YCbCr color space that can be 
directly equated to the RGB color space. This color 
space separates the luminance from the chromatic 
components and it provides an attractive representation 
form of colors when desiring to work with a skin color 
modeling. The YCbCr color space has presented better 
results for the GMM algorithm than the RGB color 
space, even the normalized [2, 10]. 
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