A scaled morphological toggle operator for image transformations
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Abstract

Scale dependent signal representations have proved to
be useful in several image processing applications. In
this paper, we define a toggle operator for binariza-
tion/segmentation purposes based on scaled versions of an
image transformed by morphological operations. The tog-
gle decision rule, determining the new value of a pixel, con-
siders local spatial information, in contrast to other mul-
tiscale approaches that takes into account mainly global
information (e.g., the scale signal under study). We show
that the proposed operator can identify significant image
extrema information in such a way that when it is used in
a binarization process yields very good segmentation and
filtering results. Our algorithm is validated against known
threshold-based segmentation methods using images of dif-
ferent classes and subjected to different lighting conditions.

1. Introduction

Different representation levels to extract significant fea-
tures of a signal have been useful in several image and sig-
nal processing applications. Approaches based on wavelets,
pyramidal decomposition and scale-space theory are largely
used, the latter one being the focus of this work.

Scale-space is a mathematical concept from which it is
possible to relate information obtained in different scales,
an intrinsic and general problem of the multiscale ap-
proaches. In the scale-space theory [23, 3], the represen-
tation of an interest feature of the signal describes a con-
tinuous path through the different scales. In other words, if
important features of the signal are present at scale n, then
are also present in all the scale-space path up to the orig-
inal image representation (at scale ¢ = 0). This property
is called monotonicity, since the number of features must
necessarily be a monotonic decreasing function of the scale
o [23], having no creation of features.

Scaled morphological operators have been frequently as-
sociated to non-linear filters and scale-space theory. Us-
ing openings and closings, Park and Lee [13] defined a
scale-space for one-dimensional signals. Jang and Chin [4]
also used these operations in the definition of a scale-space
where the interest features are the contour segments of bi-
nary images. The extension of these results to gray-scale
images is not direct.

As proved in [9], any convolution kernel used to ob-
tain the scale-space introduces new extrema as the scale in-
creases and, thus, the monotonicity property for the signal
extrema does not hold. To solve this problem, Jackway [3]
introduced a scale-space called Multiscale Morphological
Dilation Erosion (MMDE) that considers non-linear mor-
phological operators [18] in a scaled morphology frame-
work, sharing important properties with the Witkin’s scale-
space [23].

In the MMDE, a multiscale operation unifies the ero-
sion and dilation transformations so that both positive and
negative scales are taken into account. The multiscale ero-
sion/dilation of a signal f(x) by the scale dependent struc-
turing function g, (x) is defined as [3]:

(f®go)(x), ifo>0;
(f®go,)(x)=1q [f(x), if o = 0; (1)
(f ©90)(x), ifo<O0.

where (f @ g, )(x) denotes dilation and (f © g, )(x) erosion
of the pixel at location x.

It is easy to see that the image is processed by dilation,
for positive scales, and by erosion for the negative ones.
Jackway defined the interest features as the watershed of
the smoothed signal in a certain scale. However, as stated
by the author, this method cannot be directly associated to
image segmentation since “‘the watershed arcs moves spa-
tially with varying scale and are not a subset of those at
zero scale” [3, 2].

In [7, 8], Leite and Teixeira explored the important
MMDE scale-space property, concerning image extrema
preservations, by using the extrema set obtained during the



filtering process as markers in a homotopic modification
of the original image, thus avoiding the spatial shifting of
the watershed lines. They controlled the extrema merging
through the different scales, obtaining good segmentation
results. The authors also defined a new operator that ex-
plores the idempotence of a smoothed signal transformed
by the MMDE scale-space, establishing a relation between
the structuring function g, and the extremes that persist at
a given scale o.

Scaled morphological operators are also applied for im-
age sharpening. Kramer [6] proposed a non-linear operator
that replaces the original gray value of a pixel by the local
minimum or maximum, depending on what value is closer
to the original one. Shavemaker et al. [17] generalized this
result by defining a new class of iterative scaled morpholog-
ical image operators. In fact, they proved that all the opera-
tors that use a concave structuring function have interesting
sharpening properties.

In this paper, we introduce a new image processing op-
erator based on scaled versions of a signal defined by the
scale-space morphological transformations. This operator,
defined on the scope of a toggle transformation [20, 21],
considers local pixel information (not only scale knowl-
edge) to determine if each pixel should be processed by
erosion or dilation. As we will see elsewhere, good seg-
mentation results were obtained through the validation tests
carried out on images presenting different lighting condi-
tions, which proves the robustness of our approach.

This paper is organized as follows. In Section 2, we in-
troduce the considered multiscale morphology which con-
stitutes the basis of our operator. Section 3 discusses some
basic properties of toggle mapping operators. The proposed
operator and its main features are defined in Section 4. In
Section 5 we show some results and comparisons with other
threshold-based segmentation methods. Finally, some con-
clusions are drawn in Section 6.

2. The Morphological Scale-space

Mathematical morphology is a non-linear image analysis
technique that extracts image object’s information by de-
scribing its geometrical structures in a formal way [11, 18,
19, 21].

Let f : D C R™ — R be an image function and g : G C
R™ — R be a structuring function. The two fundamental
operations of gray-scale morphology, erosion and dilation,
are defined as:

Definition 2.1 [21] (Dilation) The dilation of the function
f(x) by the structuring function g(x), (f ® g)(x), is given
by:

(fogl)= sup {flx—1)+g()} )

teGND_,

Definition 2.2 [21] (Erosion) The erosion of the function
f(x) by the structuring function g(x), (f © g)(x), is given
by:

(fegl) = inf {flx—1)-g()} 3)

teGND_,
where D,, is the translate of D, D, = {x+t:t € D}, and
D is the reflection of D. In the discrete case max and min
are used [1].

The result of these two operations depends on the lo-
cation of the structuring function center. To avoid level-
shifting and horizontal translation effects, respectively, one
must consider that [3]

sup{g(t)} = 0; “4)
teg

9(0) =0 &)

To introduce the notion of scale, we can make the above
morphological operations scale dependent by defining a
scaled structuring function g, : G, C R%2 — R such that [3]

9-(x) = lolg(jo|™'x) x€Go, Yo £0,  (6)

where G, = {x :
function g, [3].

To ensure reasonable scaling behavior, the following
conditions are also necessary [3]:

|x|| < R} is the support region of the

0, if x =0;
—00, otherwise

o] = 0= g, (x) — { )

0 < |o1| < |o2| = g0, (X) < g0, (x) for x € G,y ()

o] =00 =gs(x) =0 V x )

The above conditions imply a monotonic decreasing struc-
turing function along any radial direction from the ori-
gin [3].

Is this paper, we use as structuring function g(z,y) =
—max{z?,y?} . To make it scale dependent, we consider
Equation 6 which yields:

1
9o, y) = —Hmax{w?f}, (10)

where o represents the scale of the structuring function. Ob-
serve that, for a 3 x 3 structuring element, g,, is zero at po-

sition (0,0) and —ﬁ otherwise. Figure 1 illustrates the
structuring function.

In [3], Jackway uses the above concepts to define a trans-
formation that smooths an image without introducing new
extrema across different scales. This paper explores recur-
sive applications of the above structuring function, having
scale-space extrema preservation properties, to define a tog-
gle transformation, as explained next.



Figure 1. The structuring function.

3. Toggle Mapping

The key idea of toggle transformations or mappings is to
associate an image with [20, 21]:

e a series of possible transformations v;;

e a decision rule that determines at each pixel x the best
value among the candidates ;(x).

The decision rule depends on the application. For a bi-
nary thresholding operation, for example, the decision rule
involves, at point x, the value f(x) and the threshold level.
In this case, the primitives are the white and black images.

For contrast mapping, the primitives consist on one ex-
tensive and one anti-extensive transformation. The decision
rule chooses the primitive value that is closest to the origi-
nal image value. Toggle contrast operators based on erosion
and dilation sharpen edges without boosting the contrast of
image structures smaller than the structuring function being
used [21, 17].

The primitives of a toggle operator can be independent
of the initial image (as in thresholdings) or be themselves
transformations acting on this initial signal (as in the mor-
phological centers). Definition 3.1 presents a more formal
definition discussed in [20].

Definition 3.1 Let 7(E;R) be the class of the functions f
E = R, and F" be that of the mappings from F(E;R)
onto itself. Given a family (1;) of elements of F", one calls
toggle mapping of primitives (1;) any mapping w of F"
such that:

1. at each point x, w, equals one of the v; . or I,

2. the criterion which affects one of the 1;’s, say ;, to
w at a given point x depends only on the various prim-
itives 1;, on the numerical value I, and on possible
constants,

3. if at point x, at least one of the 1;’s, say V;,, coincides
with the identity mapping I, then

wy =1, :d}io,x (11)

One way to guarantee a well controlled behavior of the
whole process, with no risks of undesired spurious effects
such as halos and/or oscillations, is to deal with idempotent
toggle operators [20]. The next section illustrates another
alternative to this problem based on a specific knowledge of
the pixels transformation.

4. The Operator Definition

As stated before, a toggle operator has two major points:
the primitives and a given decision rule. In this paper, we
consider two primitives representing, respectively, an exten-
sive and an anti-extensive transformation, namely, the scale
dependent dilation and erosion (Equations 2 and 3). This
toggle operator is given by

UF(x) ifoF(x) — f(x) < f(x) - ¥5(x)
(foge)"(x) = ¢ f(x) iff(x) = f(x) = f(x) = ¥5(x)
Y5 (x) otherwise,
(12)

where ¥ (x) = (f @ g,)*(x), that is, the dilation of f(x)
with the scaled structuring function g, k times. In the same
way, ¥5(x) = (£ © g5)* (x).

In a general way, the use of multiscale operators enables
us to analyze the different representation levels to further
choose the one exhibiting specific interest features. In our
case, we explore the recursive applications of the primitives

f, associated to the notion of scale, in order to decide the
new state of a pixel.

Note that the above defined toggle operator is not idem-
potent. However, as explained in the next proposition, at a
given point X, the operator will strictly increase (decrease)
up to an iteration kg, yielding a well-controlled toggling
process. After this iteration, the value of x strictly decreases
(increases).

Proposition 4.1 Letx be a given pixel in the image and g(.)
be as before a structuring function with a single maximum
at the origin, that is, g(x) is a local maximum implies x =
0. The sequence defined by (f @ g,)*(x) is stationary and
monotonic increasing (decreasing) until a certain iteration
ko, while it is monotonic decreasing (increasing) after the
iteration ko. For ko = 1 the sequence is strictly increasing
(for dilations) and decreasing (for erosions). The proof of
this proposition is given in Appendix A.

Since the sequence is stationary, we have the guarantee
that it converges to a constant value, that is, it stabilizes after
a certain number of iterations.
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Across the different iterations, a pixel can initially con-
verge to a specific local minimum (maximum) and after a
certain iteration, kg, converges to an image maximum (min-
imum). In Figure 2, as the number of iterations increases,
the influence zone of the deeper minimum my growths and
the eroded values in the neighborhood of m; decrease sig-
nificantly, leading the value f(m1) to be closer to the di-
lated values.

Figure 3 shows an example in which ky = 1, that is, a
pixel transformed value is strictly increasing or decreasing.

At this step, we can conclude that, in some neighbor-
hood of an important minimum (maximum), the pixels val-
ues will be eroded (dilated) in such a way that, when these
transformations are associated to the notion of scale, we can
identify the significant extrema of the image and their influ-
ence zones through a simple thresholding operation.

In this sense, we define a new thresholding operation
that uses the same primitives and decision rule as in Equa-

tion 12, given by:

if WF(x) — _ ok
(f@ga)‘“(X)={ 265 VR0 ~ £ <= 79~ v
(13)

where, again, ¥} (x) = (f & g,)¥(x), that is, the dilation of
f(x) with the scaled structuring function g, k times. In the
same way, 95 (x) = (f © g5)" (x).

5. Results

In this section, we give some examples of the transfor-
mation represented by Equation 13.

The first example shows the segmentation of a histori-
cal document in which the front side of the paper contains
ink components from its verso side. The segmentation here
was compared against the moving averages [22] algorithm,
specially designed for segment text images. The moving
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Figure 4. Segmentation example for a historical document image

average method considers the mean gray level of the last n
pixels. The pixels with a gray level lower than a fixed per-
centage of its moving average are set to black; otherwise
they are set to white. Figure 4 shows the original and re-
sulting images, and two selected regions. Note the better
performance of our operator in the sense that it suppresses
properly the components belonging to the reverse side of
the paper.

The second experiment was carried out based on a
set of images with varying lighting conditions (linear,
Gaussian and sine-wave) [14], and on a set of well-known
threshold-based segmentation methods described in litera-
ture, namely, moving averages [22], regional thresholds [14,
16], the Otsu’s [12] and the Kapur’s [5] thresholding algo-
rithms. An evaluation of these methods as well as the set of
considered images can be found in [14].

Briefly, Otsu’s and Kapur’s algorithms are based on the
analysis of gray-level histograms. Otsu’s method selects
as an optimal threshold the one which minimizes the ratio

between the “between-class” and the total variance. The
between-class variance is defined as the deviation of the
mean values for each considered class (background and ob-
ject) from the overall mean of the pixels.

Kapur’s algorithm takes into account the entropy of the
gray level histograms. The method computes separately the
entropy of object and background pixels, H}(t) and H,, (t),
choosing as the optimal threshold the value of ¢ that maxi-
mizes H = Hy(t) + Hy(t).

The approach based on regional thresholds divides the
original image into regions and uses an appropriate algo-
rithm to select a threshold per region. In this case, the size
and the number of regions are important parameters, since
we need to ensure that either region contains a sample of
both object and background pixels. The examples illus-
trated in this paper were thresholded using the iterative se-
lection [15] algorithm on overlapping 21 x 21 regions cen-
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Figure 6. Segmentation results for the sky image with Gaussian illumination.

Frf’"‘l)‘v Lost (mfa ‘o
var r,J ld’ff'l

irircm Lost L:til', L4
xji, xt2 : real; xft xe2 ! real;
bein
Jf’v = 1 FAS P I 4

beqin — (u:f‘ begin

-"j“'
xy xgf e xyl * ¢

. £n‘(
ket et et ts (el

(a) Original image (b) Moving average

ragranms Zost Cin i e foragran
Ve r 1,11 I‘lb"'-»
Xy , XEZ ° vealy xyl xelZ : seal

(c) Otsu’s method

lost [nf o f, }7"”‘ Lost (mfuf,-

le 4 xLZ 'u/:

égm .
Son fie g foto @

b.jfn e s Seqgin .-
i 'J w
{.’] 1= Ju,’t i B " *J’ s :._’”
iata (Aieate [ R, T
(d) Kapur’s method  (e) Regional thresholding

Figure 7. Segmentation results for the pascal image with sine-wave illumination.

ul
.
il

N

(a) Face (for k= 1:and;:7 =0.1)

Pnyram Lost cmfu* -
var ¢, 4 ¢ inlegey s

K}I,Xf.l real;
begin
7 Sov iz g foio £
6{7;.- . ’j" l.-;
xy!.’: x._yz o~
Enct ;

% ur't:ﬁv ¢ esalt

(b) Sky (for k = 1 and o = 0.06)

(¢) Pascal (for k = 2and o = 0.1)

Figure 8. Segmentation results by the proposed operator for the original images in Figures 5-7.

tered on each pixel. The iterative selection thresholds the
image into object and background pixels repeatedly, using
the levels in each class to refine the corresponding thresh-
old.

Figures 5, 6 and 7 show the segmentation results for the
above mentioned algorithms. Figure 8 presents the corre-
sponding results using the operator defined by Equation 13.
Note that the image background have converged to a local
maximum (being assigned to 255).

The well-controlled behavior of the operator in Equa-

tion 13 is due to the merging of the image extrema so that no
new maxima or minima are created, according to the mor-
phological scale-space theory which constitutes the basis of
our approach. The good performance of this approach can
be explained mainly by the local information obtained from
this well-controlled image extrema simplification, along the
different iterations. Finally, note that the operator selects
one threshold per pixel based on local features, as it is the
case for dynamic thresholdings. Figures 9 shows other re-
sults for the operator in Equation 13.
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Figure 10. An example of the original image simplification (Equation 12).

6. Conclusions

In this work, we introduced a new toggle operator by ex-
ploring the strong monotonicity property for regions of a
2D signal, according to the morphological scale-space ap-
proach discussed in literature [3, 23]. We work with an ex-
plicit notion of scale guided by the scale-space theory, us-
ing a toggle transformation for segmentation problems, un-
like the other applications of this operator which consider
mainly problems related to image contrast enhancement.

This operator has a well-controlled behavior given by a
merging of the image extrema in such a way that no new
minima and maxima are created along its different itera-
tions. Figure 10 illustrates this simplification process of an
image, by progressive merging of extrema, with preserva-
tion of its main geometric features. Further, by taking into
consideration some aspects of this merging, we proposed a
binarization procedure (Equation 13), yet in the scope of a
toggle mapping, to achieve the final segmentation.

As a future work, we will deal with the problem of lo-
cally controlling the extrema merging by taking into ac-
count the height of the structuring functions and the distance
between the image extrema in the definition of a parametric
mapping using both these information.
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Appendix A: Proof of proposition

Proposition 1
The operator defined in Equation 12 can be rewritten as

UP(x) i f(x) > 5 (B + )
(f@g,)x) =4 () it F(x) = 5(F +ax)  (14)

Y& (x) otherwise

with o = ma; x), f(x—t;)+jg(t)} and
o= e (09, (- ) + jg(0)
= flx—t;)—jg(t
Br = i ])t¢0{f( x), f(x—t;) —jg(t)}
where j = 1,2,...,k, with k the number of iterations,

N(x, €) are the set of pixels that are in a chess distance less
or equal € from Xx.
The sequence () satisfies:

ag > f(x);



(a;) is monotonically increasing, that is, o, < ag1 Vk;

(av) is stationary, that is, 3 ko /V k > ko, ar = ay,.

The sequence () satisfies:
Br < f(x);

(B) is monotonically increasing, that is, Sy > Br+1 Vk;

(Bk) is stationary, that is, 3 ko /V k > ko, Bk = Brk,-

Let v, = 3(a + Bi). As the sequences (ay) and (By)
are stationary and monotone, we have that the sequence
(7k) is both monotonic and stationary [10]. This yields a
sequence vy that is monotonically increasing or decreasing
and that stabilizes after a certain number of iterations.

It worths noting that, depending on the (ay) and (G%)
values, the sequence (7yx) can intercept the value f(xo)
across iterations. Figure 11 shows an example in which the
operator result is given by dilation, until iteration kg, and
then by erosion after this iteration. When this happens, we
know that the pixel is being affected by an influence zone
of a stronger image extremum (it changes from a maximum
to a minimum influence zone).

T
Dilation

(Erosion+Dilation)/2 N

-----
~~~~~~~
........

Iteration

Figure 11. Proposition 1 illustration.
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