
Single Triangle Strip and Loop on Manifolds with Boundaries

Pablo Diaz-Gutierrez David Eppstein
Department of Computer Science
University of California, Irvine.

M. Gopi

Abstract

The single triangle-strip loop generation algorithm on a tri-
angulated two-manifold presented by Gopi and Eppstein
[4] is based on the guaranteed existence of a perfect match-
ing in its dual graph. However, such a perfect matching
is not guaranteed in the dual graph of triangulated mani-
folds with boundaries. In this paper, we present algorithms
that suitably modify the results of the dual graph matching
to generate a single strip loop on manifolds with bound-
aries. Further, the algorithm presented in [4] can produce
only strip loops, but not linear strips. We present an al-
gorithm that does topological surgery to construct linear
strips, with user-specified start and end triangles, on mani-
folds with or without boundaries. The main contributions of
this paper include graph algorithms to handle unmatched
triangles, reduction of the number of Steiner vertices intro-
duced to create strip loops, and finally a novel method to
generate single linear strips with arbitrary start and end
positions.

1. Introduction

The advantages of constructing triangle strips are not re-
stricted to a reduction in the number of vertex transforma-
tions during rendering, but they have been shown to be use-
ful in efficient data structures for fast back-face culling, ver-
tex caching[6, 1], mesh simplification, compression [5, 11,
12, 7, 8], and generation of space-filling curves[4]. Most
stripification algorithms use a greedy technique to incre-
mentally grow the strips [3, 11], possibly followed by lo-
cal optimizations to increase the strip length[15, 13]. An
exception is [14], which takes quadrilateral meshes as its
input, and then appropriately splits them into triangles be-
fore constructing a hamiltonian triangle strip. On the other
hand, the algorithm presented by [4] reduces the stripifica-
tion problem to a graph matching problem in the dual graph
of the triangle mesh. Thanks to the availability of public do-
main software for the graph matching problem, the imple-
mentation of the algorithm in [4] is straight-forward, elimi-

nating as well most of the book-keeping required by greedy
stripification methods. This algorithm has also been stud-
ied further to achieve global controllability in strips, in or-
der to aid efficient back-face culling and transparent vertex
caching [2].

The stripification algorithm based on graph matching re-
lies on the existence of a perfect matching in the dual graph
of a triangle mesh. The sequences of unmatched neighbors
form strip loops. Dual graphs of triangulated manifolds with
boundaries are not guaranteed to have a perfect matching.
The existence of triangles without matched neighbors pos-
sibly leads to multiple linear triangle strips, as opposed to
strip loops. Linear strips cannot be further processed to cre-
ate a single triangle strip. Producing a single triangle strip
yields advantages that go well beyond rendering. With a sin-
gle strip, a continuous linear parametrization of the entire
model can be induced. Such parametrization can be used for
stratified sampling, compression of the topology and geom-
etry of the model, total ordering of mesh elements, etc. A
single strip can also be used for efficient data structure ma-
nipulation for view-dependent rendering [2].

In this paper, we make important and non-trivial contribu-
tions towards analyzing and extending the stripification al-
gorithm based on graph matching to manifolds with bound-
aries, in order to create single triangle strip loops and linear
strips that provide all the advantages mentioned above.

Main Contributions: The following are the main contribu-
tions of the paper.

• We study the effects of the graph matching algo-
rithm on the dual graph of triangulated manifolds
with boundaries, and its applicability to stripifica-
tion.

• Based on the above study, we develop algorithms to
produce single triangle strip loops on manifolds with
boundaries.

• Variants of the above algorithm are presented in order
to both improve the run-time efficiency, and to reduce
the number of additional (Steiner) vertices introduced
while merging different strip-loops.

Figure 1. Top (left to right): (a) The dual degree three
graph of the triangulation of a genus 0 manifold and a
perfect matching shown by dark edges. (b) The set of
unmatched edges create disjoint cycles. Two such cy-
cles are shown. These disjoint cycles are connected to
each other by matched edges. The algorithm construct
a spanning tree of these disjoint cycles and hence choose
matched edges that connect these cycles. (c) The triangle
pair corresponding to chosen matched edges in the tree
are split creating two new triangles. Matching is toggled
around the new (nodal) vertices resulting in a triangula-
tion with a Hamiltonian cycle of unmatched edges. Bot-
tom (left to right): (d-f) A generalized example of the
same process shown just on the dual graph. [4]

• Finally, we present a new algorithm based on local
topological surgery, that uses the above stripification
algorithm to generate a linear strip starting and end-
ing at user-specified triangles.

2. Single Triangle Strip Loop Creation on
Manifolds

The problem of finding a single triangle strip in a trian-
gle mesh is equivalent to finding a Hamiltonian path in
its dual graph, which is a well known computationally in-
tractable problem. However, if we allow the addition of
a few Steiner vertices, without changing the geometric fi-
delity or the topology of the mesh, we can find a single tri-
angle strip in polynomial time. The algorithm presented by
[4] is one such method that uses a perfect graph matching
algorithm on the dual graph of a triangulated 2-manifold to
create a single loop representation. Here, we briefly explain
this algorithm for the sake of completion.

A matching in a graph pairs each vertex with at most one
of its adjacent vertices. A perfect matching is a matching
in which every vertex of the graph is matched. It is known
from [10] that such a perfect matching exists for a 3-regular
(each node is adjacent to 3 others), 3-connected (it is pos-
sible to find a path from any vertex to every other one after
removing any 2 vertices) graph, such as the dual graph of
a triangulation of a manifold without boundary. In the dual

Figure 2. (a) Left side pair of graphs: A nodal vertex
with (six) even number of incident triangles and trian-
gles belonging to three unique cycles. By switching the
matched and unmatched edges, all these cycles can be
merged to a single cycle. (b) Right side pair: Examples
of non-nodal vertices. In both the examples, there are six
incident triangles but only two unique cycles. [4]

graph of a triangulation, a perfect matching is a pairing of
every triangle with exactly one of its three edge-connected
neighbor triangles. Triangle strip loops can be formed by
connecting every triangle with its two unmatched neigh-
bors. This yields not one, but many disjoint strip loops.

Next, all the disjoint loops can be iteratively joined into one
by means of two simple operations, each of which takes two
or more loops and merges them. The first operation splits
two adjacent triangles that belong to different loops (refer to
Figure 1) and merges the loops into one. The second oper-
ation is called nodal vertex processing. A nodal vertex with
degree n is a vertex in the original mesh where n is even
and the number of different loops incident on that vertex
is n/2 (Figures 2(a), 2(b)). Around such a vertex, pairs of
matched and unmatched triangles alternate around the nodal
vertex. Swapping the matched and unmatched triangle rela-
tionship around a nodal vertex merges all the incident strip
loops into one. Unlike triangle splitting, nodal-vertex pro-
cessing merges loops without introducing additional faces
to the mesh.

The perfect matching on the dual graph, on which the above
algorithm relies, is guaranteed to exist only on 3-regular
bridgeless graphs. But the dual graph of a triangulation of
a manifold with boundary will have nodes (corresponding
to the boundary triangles) with degree less than three, and
hence a perfect matching is not guaranteed to exist. There-
fore, applying the stripification algorithm [4] would pro-
duce both linear triangle strips and strip loops (Figure 3(a)).
In the following sections, we study the matching algorithm
on such graphs and extend the stripification algorithm to
work on manifolds with boundaries.

3. Single Triangle Strips on Manifolds with
Boundaries

As in the case of manifolds, the goal of our stripification al-
gorithm for manifolds with boundaries is to first create a set

(a) (b) (c) (d) (e)

Figure 3. (a) The stripification algorithm of [4] produces linear strips and strip loops in a mesh with boundary. (b) Forc-
ing matching of the boundary triangles produces unmatched triangles (also called junction nodes, denoted by dark points)
and paths of unmatched edges between them. The shortest path is shown using a lighter color. (c) The internal triangles
along this shortest path are paired. Each pair of triangles is split into four triangles. Triangles without a pairing are split
into three triangles. This yields perfect matching of the entire mesh. The number of new triangles introduced is depen-
dent on the length of the shortest path. (d) An alternate matching yielding a shorter path between the junction nodes. Such
shortest paths are produced by (optimal) forced-loop algorithm. (e) The only triangle in the shortest path, and hence with-
out a pair, is split into three triangles as before.

of disjoint triangle cycles, such that their union covers all
the triangles of the model. This will be followed by the cy-
cle merging operations, as explained in the previous section,
to create one single triangle strip loop.

We conceptually close each hole in the manifold with
boundaries by introducing one hypothetical vertex per
boundary, and hypothetical triangles that connect the
boundary edges with the hypothetical vertex associ-
ated to their hole. Given this new manifold without
boundaries, we can use exactly the same algorithm as de-
tailed in the previous section to create disjoint strip loops,
since a perfect matching exists for its dual graph.

The strip loops produced this way might cross the original
mesh boundary. This is undesirable because when the hy-
pothetical triangles are later removed, such loops are cut
and converted into linear (non cyclic) strips. In the rest of
this section we describe two methods to prevent the strip
loops from crossing the original boundary edges – forced-
loop method and split-tie method.

Forced-loop method: In this method, we enforce a match-
ing between each hypothetical triangle and the original tri-
angles on the opposite side of the boundary. This way, hy-
pothetical triangles around each boundary are forced to lie
in the same strip. The undesired consequence of this ap-
proach is that if the forced matching is respected, a perfect
matching need not exist in the rest of the graph. As we see
later, the complexity of this method lies in achieving a per-
fect matching using triangle split operations.
Split-tie-loop method: In this method, we let the strips
cross from original to hypothetical parts of the mesh. The
complexity of this approach lies in applying minor ’surgery’
to these cross-over points, splitting and tying the loops so
that they remain either completely inside or completely out-

side the original mesh.

3.1. Forced-Loop Method

In order to prevent strips from crossing the boundary edges,
the boundary edges have to be forced to be matched. Since
at most one edge of each triangle can be matched, and
hence become a boundary edge, an original triangle with
two boundary edges is split along with its only neighbor tri-
angle, so that the resulting triangles will have at most one
boundary edge each. The graph matching algorithm is made
to respect this pre-existing forced matching. If there exists
a perfect matching in this mesh with forced matched edges,
then the sequence of triangles along the unmatched edges of
the original mesh form disjoint cycles and their union cov-
ers all the triangles of the mesh, thus solving our problem.
But the fundamental problem is that if we respect the forced
matching, the dual graph might not have a perfect matching.
The following algorithm suitably modifies the original mesh
in order to find a perfect matching. Further, it also mini-
mizes the number of triangle-split operations necessary to
achieve this perfect matching.

Let us first give an intuition behind our algorithm. Since the
boundary triangles are matched with hypothetical triangles
across the boundary edges, the boundaries can be consid-
ered to be closed by these hypothetical triangles, thus cre-
ating a triangulated manifold without boundaries. Further,
since a triangulated manifold mesh has even number of tri-
angles, there is an even number of unmatched triangles in
the original mesh (Figures 3(b) and 3(d)). These unmatched
triangles are connected by paths of unmatched edges. The
goal is to match these unmatched triangles between them-
selves through these unmatched edge paths. To achieve a

perfect matching, every triangle along these paths has to be
split (Figures 3(c) and 3(e)). The shorter these paths are, the
fewer splits will be required. This process is shown for two
different matchings in Figure 3, including the resulting tri-
angle splits. One matching has longer unmatched paths than
the other. The rest of the algorithm attempts to shorten the
paths between pairs of unmatched triangles.

Consider the modified original mesh where every boundary
triangle has exactly one boundary edge and construct hy-
pothetical triangles across each of the boundary edges. Let
G1 be the dual graph of this modified mesh where all nodes
have degree three and there is an extra degree-one node for
each boundary edge.

Let G2 be the spanning subgraph of G1 with the fewest
edges such that every node in G2 has odd degree. Such a
graph has interesting properties: if G1 has a perfect match-
ing, G2 will consist of all nodes and only the matched edges
so that every node has degree one. Even if G1 has no perfect
matching, every node in G2 can be matched, not necessar-
ily along a single edge, but along a sequence of edges such
that no two such sequences share an edge. In the context of
the example described earlier (Figure 3(d)), the nodes of G2
consist of the dual of all triangles, all the matched edges,
and the shortest sequence of unmatched edges between the
unmatched triangles. In G2, the nodes corresponding to the
internal triangles of the path connecting two unmatched tri-
angles will have degree three, and the rest of the triangles
will have degree one. In order to find such a graph G2 with
minimum number of edges, we use the solution to the clas-
sic Chinese Postman Problem.

Complete node matching: Make a weighted complete
graph which contains all nodes of G1 with weight equal to
the length of the shortest path between that pair of nodes
in G1. Compute a minimum weight perfect matching in this
weighted complete graph. Such a perfect matching exists
because it is a complete graph with even number of nodes.
Note that most of these matched edges will have weight one.
Let G2 consist of the edges belonging to paths correspond-
ing to the matched edges in the complete graph. Most of
these paths have length one, and hence the corresponding
nodes are directly matched to each other in G2; others are
matched along a sequence of edges with minimum num-
ber of internal nodes. (These paths that are longer than one
edge are equivalent to the shortest path between two un-
matched nodes in Figure 3(d).) The internal nodes have de-
gree three. The next step is to split the triangles along these
longer paths in such a way to find a perfect matching. Note
that if the original graph has a perfect matching, G2 will
have no path longer than one and hence no internal nodes.

Path split operation: The goal of this step is to split the tri-
angles along the longer paths to get a perfect matching of all

triangles on the path. Find maximum matching among the
internal nodes of G2. Split each pair of matched internal tri-
angles into four triangles using triangle-split operation, and
each remaining unmatched internal triangle into three trian-
gles. These triangle splits will induce the required perfect
matching of all nodes in the longer paths, and hence the en-
tire triangulation (Figures 3(c) and 3(e)).

The above algorithm, by virtue of being the result of a mini-
mum weight perfect matching, minimizes the number of in-
ternal triangles, and hence the number of triangle splits to
create a perfect matching. But on the other hand, since the
weighted complete graph, on which minimum weight per-
fect matching algorithm is applied, has n2 edges (where n
is the number of triangles in the model), it is impractical to
use this algorithm in normal graphics applications for which
models with 1000 triangles (around one million edges in the
extended graph) are considered tiny. Hence we are forced to
design a sub-optimal but practical algorithm.

3.1.1. Modified Forced-Loop Method Here we present a
modified forced loop method that is sub-optimal but practi-
cal. We consider the modified mesh with a hypothetical tri-
angle across every boundary edge and every boundary tri-
angle with only one boundary edge as input. We force the
matching between the hypothetical triangle and the bound-
ary triangle as before. In the dual graph of such a mesh, if a
perfect matching exists the set of unmatched edges would
form disjoint cycles. In the absence of a perfect match-
ing, three paths of unmatched edges meet at unmatched
nodes. These paths will start and end in unmatched nodes
also called the junction nodes (Figure 3(b)). Hence that to-
tal number of such paths is at most 3 j/2 where j is the num-
ber of junction nodes. The first step is to match these junc-
tion nodes with each other along the unmatched edge-paths,
such that the total path length of all the matchings is min-
imized. This can be solved using the same technique that
we used to find the graph G2, now with the weighted com-
plete graph of only the junction nodes with the distance be-
tween each of them as the weights of the edges. Edges be-
tween junction nodes that are disconnected in the original
graph are given an infinite weight. A minimum weight per-
fect matching on this complete graph will return paths that
match these junction nodes with each other. Given these
paths, the second step is to use the path split operation as
described in the previous section to induce perfect match-
ing.

The resulting strip loops lie completely inside the original
mesh and do not cross the boundary edges. These loops
are later merged into one single cycle using algorithms pre-
sented in [4].

The fundamental difference between the forced loop
method and the modified forced loop method is that one

uses all the triangles in the entire mesh to form the weighted
complete graph, while the modified algorithm uses only the
junction nodes and the paths between them to form com-
plete graph. Although this is the primary reason for the
practicality of the method, this is also the reason for its
sub-optimality: In the modified method, given the junc-
tion nodes and the paths between them, we choose pairs of
junction nodes to minimize the total path length; in the op-
timal method, we try to find the junction nodes and paths
between them so that the sum of the path lengths be-
tween each other is minimized. For example, while the
examples shown in Figures 3(b) and 3(c) may be re-
sult of the modified (sub-optimal) forced loop algorithm,
those shown in Figures 3(d) and 3(e) are result the of opti-
mal forced loop algorithm.

3.2. Split-Tie-Loop Method

The (optimal) forced loop method is too expensive to com-
pute. The (sub-optimal) modified forced loop method is un-
predictable. The upper bound on the path length between
the given junction nodes is the size of the triangulation,
which is not very useful. For instance, this modified sub-
optimal method on the bunny model produced 36.38% new
faces due to triangle splits while in all other models the new
faces were less than 2% of the original model size. Hence
we present a method, Split-Tie-Loop method, that may not
be optimal, but produces consistently good results on all the
models, and its bound on the number of triangle splits is
proportional to the number of boundary edges.

In the split-tie-loop method to find single strip loop on man-
ifolds with boundaries, the algorithm design decision is
to let the strips cross over from original mesh boundaries
and post-process these cross-over points to split and tie the
cross-over strips to lie within the original mesh.

We create a manifold out of a manifold with boundary by
adding one hypothetical vertex for each closed boundary
loop and connect the boundary vertices of the mesh to the
corresponding hypothetical vertex. The dual of the above
manifold mesh has a perfect matching and the sequence of
unmatched edges forms disjoint strip loops in the primal.
Note that there might be strips that cross over boundary
edges between the original mesh and the hypothetical mesh.
We observe that, because of the adjacency relationship be-
tween the hypothetical triangles, the cross-over boundary
edges occur in pairs sharing a common boundary vertex.

The idea is to do ‘surgery’ around the triangle fan inci-
dent on the boundary vertex shared by cross-over boundary
edges to create a trail for the outgoing and incoming strips
in either end to be connected. The surgery is done as follows
(refer to Figure 4). First tag the boundary edges as matched

Figure 5. Linear strip algorithm: Given the start and
end triangles of the strip, two edges of each of these tri-
angles are cut and the triangles are pasted to each other
along one of these cut edges. Single strip loop is found in
the resulting manifold with boundary. Finally, the mesh
is again cut along the pasted edge to create the required
linear strip.

edges. Then processing the edges around the boundary ver-
tex in the counter clockwise direction, if the current edge e
is a matched edge, tag it as unmatched and move on to the
next edge. If the current edge e is an unmatched edge then
split the incident triangles. Let the two new edges be L and
R. The edge L is tagged as a matched edge if e is not the first
internal edge of the fan. The edge R is tagged as matched if
the next edge e + 1 in the fan is matched and is not the last
internal edge of the fan. Strip loops can be formed by con-
necting triangles along the unmatched edges. These loops
can be merged to form a single strip loop as explained in
[4]. In summary, following are the possible cases:

IF e is unmatched split triangles
IF e is the first internal edge

[Case 1] THEN left split edge L is unmatched.
[Case 2] ELSE the left split edge L is matched.

IF e+1 is not the boundary edge
IF e+1 is unmatched

[Case 3] THEN the right split edge R is unmatched.
[Case 4] ELSE the right split edge R is matched.
[Case 5] ELSE the right split edge is unmatched.
[Case 6] ELSE unmatch e.

An illustration of this method is given in Figure 4.

The above algorithm reduces the number of splits given a
pair of boundary edge crossings. But the number of splits
can be reduced further by reducing the number of bound-
ary edge crossings. In order to achieve that, we assign high
weights to the boundary edges and use a weighted graph
matching algorithm that maximizes the sum of the weights
of chosen matched edges. Boundary edges are preferred to
be matched, thus reducing the number of strip crossovers.

‘

L-unmatched
(Case 1)

R-unmatched
(Case 3)

Processed
Edge

Processed
Edge

L-matched
(Case 2)

R-matched
(Case 4)

Processed
Edge

Case 6

Processed
Edge

L-matched
(Case 2)

R-unmatched
(Case 5)

Figure 4. Split-tie algorithm: Once we define the adjacency of the hypothetical triangles (shown as dashed lines) added
across the boundary edges of the mesh, we observe that the strip loops crosses the boundary edges in adjacent pairs. In or-
der to split and tie the ends of the strip escaping out of the mesh, we process the edges of the fan of the boundary ver-
tex in counter clockwise order. The edge under processing is shown using arrows. The dark edges are matched edges and
the strips are shown as green curves. First, the boundary edges are made matched edges. Then subsequent edges are pro-
cessed as described in Section 3.2. The final result shows the redirecting of the strip to be completely inside the mesh.

Model #holes #faces (a) Final #faces (b) %extra faces (c) seconds (d) Final #faces (e) %extra faces (f) seconds

Bunny 5 9580 13056 36.28 2.77 9816 2.46 1.91
Blob-8 8 16022 16318 1.85 10.68 16266 1.52 7.86
Blob-24 24 15922 16212 1.82 10.32 16200 1.75 8.17
Blob-40 40 15826 16122 1.87 10.69 16134 1.95 8.84
Skull 10 22046 22642 2.70 12.07 22578 2.42 6.97
Armadillo 172 344912 351040 1.78 2438.00 351144 1.81 1048.00

Table 1. Stripification results of 6 models: (a) Number of faces after applying (sub-optimal) force-loop method. (b) Percent-
age of added faces for same method. (c) Seconds to compute single-strip. (d,e,f) Same as (a,b,c) for split-tie method.

4. Creating Single Linear Strips

We use the above algorithms that produce single strip loops
on manifolds with boundaries to produce a single linear
strip. This strip starts and ends at any two arbitrary (but dis-
tinct) triangles on a manifold with or without boundaries.
We achieve our goal by using topological surgery and the
single strip loop finding technique.

Given the required start and end triangles T1 and T2, we have
to construct a strip that starts from T1, passes through all
other triangles in the model exactly once and ends in T2. We
cut along two edges of T1 and T2 and make the triangles into
boundary triangles (with two boundary edges each) and the
mesh into a manifold with boundary. Then we paste T1 and
T2 to each other along one of their cut edges. Now, each of
these triangles has only one boundary edge. Next we con-
struct a single strip loop that passes through the entire model
with this changed topology, using one of the algorithms ex-
plained in previous sections. In this strip loop, triangles T1
and T2 have to be adjacent to each other, since the third edge
in either of these triangles is a boundary edge, and the strip
does not cross over boundary edges. Finally, we separate T1
and T2, to paste them back at their original positions in the
mesh. After this restoration, the strip loop becomes a lin-
ear strip with T1 and T2 as its end points.

5. Implementation and Results

We tested the two stripification methods on a set of mani-
fold models with varying number of boundaries, and the re-
sults are shown in Table 1. As we can see, the number of
added triangles for most models is between 1.5% and 2.5%
of the input size. As mentioned before, the increase in num-
ber of faces with the modified forced loop algorithm is not
predictable, and hence in one case (the bunny model) it in-
duces more than 35% of faces due to triangle split opera-
tions. It has been pointed out in [4], that in practice in man-
ifold meshes, the number of additional faces is less than
2% of the original number of faces. The time spent in ob-
taining the results is dominated by the time to compute the
weighted matching. For this we used LEDA’s implementa-
tion [9] of this algorithm. Substantial improvements can be
achieved with an alternate implementation that takes into
account the properties of the dual graph of a triangulated
manifold, specially in large models such as the one in Fig-
ure 9.

The preprocessing time for the (suboptimal) modified
forced-loop algorithm is quadratic in the number of junc-
tion nodes. On the other hand, the split-tie method takes
linear time in the size of the boundary. These differ-
ences can help decide which method to use for a particular
input mesh.

In order to obtain the single strip, we allow the addition of
some Steiner vertices that do not affect the geometric fi-
delity of the mesh. In the case of the Split-tie method, the
number of additional vertices is bounded above by a fac-
tor linear on the size of the boundary. Specifically, the up-
per and lower bounds are 3n− 4log2 n. For the modified
forced-loop method, the upper bound is linear on the total
size of the mesh.

Figure 6 shows the results of applying the modified forced
loop algorithm to the blob and bunny models. In the blob
model there are many unmatched triangles (junction nodes).
Therefore, there exist shorter paths between them, which re-
quire fewer triangle splits. But in the bunny model there are
only two junction nodes, and they are are very far apart,
such that the shortest path between them is long enough
to require a large number of triangle splits. This intro-
duces around 35% additional faces. Figure 7 shows the sin-
gle stripification of the same models using split-tie-loop
method. A clearer illustration of the split-tie-loop method
using an example of a sphere with a boundary is shown in
Figure 8. Stripification of a large model and a linear strip-
ification from and to given arbitrary triangles are shown in
Figures 9 and 10.

6. Conclusion

We have introduced two methods for obtaining a single strip
in a triangulated manifold with boundaries. This constitutes
a generalization of [4], which only handles manifolds with-
out boundaries.

Furthermore, we used the techniques above to obtain a non-
cyclic single strip on the input mesh, where the start and the
end points are chosen arbitrarily.

7. Acknowledgments

We would like to thank Anusheel Bhushan for his work in
the early stages of this and previous versions of the project.
We also want to thank the reviewers for their useful sugges-
tions.

References

[1] R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for
polygon mesh rendering. SIGGRAPH 96, 15(2):141–152,
1996.

[2] P. Diaz-Gutierrez, A. Bhushan, M. Gopi, and R. Pajarola.
Constrained strip generation and management for efficient
interactive 3d rendering. In Computer Graphics Interna-
tional Conference, 2005.

Figure 6. Modified forced-loop method on two models.
Junction nodes shown in red. The quality of the result
depends on the distance between junction nodes. Top:
Many junction nodes produce few triangle splits. Bot-
tom: Two far away junction nodes produce a large num-
ber of triangle splits.

[3] M. Gopi. Controllable single-strip generation for triangu-
lated surfaces. In Pacific Graphics 2004, pages 61–69. IEEE,
Computer Society Press, 2004.

[4] M. Gopi and D. Eppstein. Single strip triangulation of man-
ifolds with arbitrary topology. Computer Graphics Forum
(EUROGRAPHICS), 23(3):371–379, 2004.

[5] S. Gumhold and W. Strasser. Real time compression of tri-
angle mesh connectivity. In Proceedings SIGGRAPH, pages
133–140, 1998.

[6] H. Hoppe. Optimization of mesh locality for transparent ver-
tex caching. In SIGGRAPH 1999, pages 269–276. ACM
Press/Addison-Wesley Publishing Co., 1999.

[7] M. Isenburg. Triangle strip compression. In Graphics Inter-
face 2000, pages 197–204, 2000.

Figure 7. Single-strips obtained with the Split-tie
method on two models.

Figure 8. Split-tie method: Forcing the strip not to
cross a boundary. Left: Hole shown in white; The 2 pro-
cessed triangle fans in red and green Right: After pro-
cessing the triangle fans, the strip avoids the boundary.

[8] T. Lewiner, H. Lopes, J. Rossignac, and A. Vieira. Efficient
edgebreaker for surfaces of arbitrary topology. In Proc. 17th
Brazilian Symposium on Computer Graphics and Image Pro-
cessing, pages 218–225, 2004.

[9] S. Naher. LEDA — a library of efficient data types and algo-
rithms. LNCS, 665:710–711, 1993.

[10] J. P. C. Peterson. Die theorie der regularen graphs (The The-
ory of Regular Graphs). Acta Mathematica, 15:193–220,
1891.

[11] J. Rossignac. Edgebreaker: Compressing the incidence graph
of triangle meshes. IEEE Trans. on Visualization and Com-
puter Graphics, 5(1):47–61, January-March 1999.

[12] J. Rossignac and A. Szymczak. Wrap&zip decompression of
the connectivity of triangle meshes compressed with edge-
breaker. Journal of Computational Geometry, Theory and
Applications, 14(1-3):119–135, November 1999.

[13] A. J. Stewart. Tunneling for triangle strips in continuous
level-of-detail meshes. In Proceedings Graphics Interface,
pages 91–100, 2001.

[14] G. Taubin. Constructing hamiltonian triangle strips on
quadrilateral meshes. In Int. Workshop on Visualization

Figure 9. Stripification of a large (344k faces) model.

Figure 10. Non-cyclic single strip representation on a
sphere. The first and last faces appear in the front.

and Mathematics and IBM Research Tech. Rep. RC-22295.,
2002.

[15] X. Xiang, M. Held, and J. S. B. Mitchell. Fast and effective
stripification of polygonal surface models. In Proceedings
Sym. Interactive 3D Graphics, pages 71–78, 1999.

