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Abstract

Expression Transfer is a method for mapping a pho-
tographed expression performed by a given subject onto
the photograph of another person’s face. Building on well
succeeded previous works by the vision researchers (facial
expression decomposition, active appearance models and
multilinear analysis, we propose a novel approach for ex-
pression transfer based on color images. We attack this
problem with methods developed by the computer vision
community for facial expression analysis and recognition.
Combining active appearance models and multilinear anal-
ysis, it’s possible to suitably represent and analyze expres-
sive facial images, while separating both style (subject’s
identity) and content (expressive flavor) from the captured
performance.

1. Introduction

The face is our primary focus of attention, playing a ma-
jor role in conveying identity and emotion. Developing a
computational model is a quite difficult task, because faces
are complex, multidimensional and meaningful visual stim-
uli [9]. Facial expression analysis and synthesis has applica-
tions in areas such as human-computer interaction and data-
driven animation. Expression Transfer is a method for map-
ping a photographed expression performed by a given sub-
ject onto the photograph of another person’s face.

Contributions. In this paper we propose the Multilinear
AAM Expression Transfer method to resynthesize new face

images from two different subjects, where the first gives
“expression” and the second gives “identity”. We use the six
“basic expressions” (anger, disgust, suprise, fear, sadness
and happiness) plus a neutral face to build our database.
Our approach employs Active Appearance Models [2, 3] to
represent a database of facial images and creates two third-
order tensors to describe variations due to identity and ex-
pressions. In this method, the Higher-Order Singular Value
Decomposition (HOSVD) [10] is used to factorize the ten-
sors along both identity and expression modes of variation.
After projection onto the “tensor space”, resynthesis is per-
formed by swapping the expression factors between the sub-
jects followed by evaluation of a multilinear operator (core
tensor).

Related work. There has been a lot of work on facial im-
age analysis and synthesis, our approach was influenced by
two works, Vlasic et al. [12] presents a method to trans-
fer faces, expressions, visemes and three-dimensional poses
from monocular video or film, from which we adopt some
ideas to 2D models. The second work, of Wang and Ahuja
[14], about facial expression decomposition, was based on
results of Cootes et al. (AAM’s) [3] and Vasilescu and Ter-
zopoulos (Multilinear Analysis) [10]. It proposes a novel
approach for facial expression decomposition, obtaining
good results for analysis but not exploring resynthesis appli-
cations. Our work presents a method to learn and to transfer
expression with color image synthesis.

Zhang et al. [15] proposes a technique to map a facial
expression using an example-based approach, they resyn-
thesize a subject that is in the training database, while our
method works even if both target and source subjects aren’t



in the database. Liu et al. [6] shows a technique, called ex-
pression ratio images, to enhance facial expression map-
ping, capturing the subtle but visually important details of
facial expressions. Their method needs two source images
one with the same expression of the target and another with
the final expression.

Turk and Pentland [9] used principal component anal-
ysis to describe face images in terms of Eigenfaces, but
this method is not robust to shape changes due to expres-
sions, and does not deal well with variability in pose and il-
lumination. Cootes et al. [3] present the Active Appearance
Model (AAM), that learns valid shape and intensity vari-
ations from a training set. AAM is a compact and simple
model for the appearance of objects and is capable of gen-
erating synthetic examples very similar to those in the train-
ing set. Vasilescu and Terzopoulos [10] demonstrated the
power of the HOSVD on ensembles of facial images, yield-
ing the TensorFaces framework.

Paper outline. An overview of active appearance models
for facial images representation is presented in the folow-
ing section. Some concepts and results from tensor algebra
used in multilinear analysis are discussed in section 3. Our
method to expression transfer is detailed in section 4 and
some of its results are presented in section 5. Section 6 con-
cludes with a discussion about current limitations and some
directions for future research.

2. Active Appearance Models

Active Appearance Models [3] learn shape and intensity
variations from their training set. There are two models in
AAM, the shape model and appearance model of a subject,
they are principal components (PCA) model learned from
training data, hence both are linear models (subspaces).

The shape of a AAM example is a set of 2D coordinates
of n landmark points, P = (p1, p2, · · · , pn). After Pro-
crustes analysis we normalize the points’ coordinates and
then use the PCA to describe points in terms of a set of co-
efficients si. Any shape P can then be approximated as a
linear combination of an orthonormal basis [2].

s(P ) = s0 +
n∑

i=1

σisi

where s0 is the mean shape, and σi’s form a set of orthogo-
nal modes of variations and si’s form a set of shape param-
eters.

To build a PCA model of the appearance, we warp each
example image so that its control points match the “Pro-
crustes’ shape” (figure 3 shows the template triangulation).
We then sample the pixels information Iim from the shape-
normalized image over the region covered by the “Pro-
crustes’ shape”. By applying PCA to the normalized data,

we obtain a linear model to an image:

a(Iim) = a0 +
n∑

i=1

αiai

where a0 is the mean of the normalized images, and αi’s
form a set of orthogonal modes of variations and ai form
a set of appearance parameters. To represent a subject we
just need to know the set of shapes and appearance param-
eters (ai’s and si’s), thats reduces the computational cost to
manipulate subjects.

In this paper, we consider the simpler case of indepen-
dent AAM’s [7], where the statistical dependence between
the shape and appearance is not considered. After AAM
training we construct a “shape tensor” and an “appearance
tensor” with coefficients provided by the PCA step then we
apply the Multilinear PCA. These topics will be presented
in the next section.

3. Multilinear Analysis

Introduced to the computer vision and graphics commu-
nities by Vasilescu and Terzopoulos, Multilinear Algebra is
the algebra of higher-order tensors, which define multilin-
ear operators over a set of vector spaces. Multilinear Anal-
ysis offers a unifying mathematical framework suitable for
addressing a variety of computer vision and graphics prob-
lems [10, 11].

Multilinear anlysis has a basic object, the tensor, that
is a natural generalization of vectors (first-order ten-
sors) and matrices m × n (second order tensor) to mul-
tiple indices. With tensor, multidimensional matrix, we
give more structure of information to an ensemble of im-
ages and then a best analysis and synthesis. We use
bold lower-case letters (v,x,w · · · ) for vectors, bold up-
per case-letters (A,B,C · · · ) for matrices and calligraphic
upper-case (T ,U ,V · · · ) for higher-order tensors. The or-
der of tensor T ∈ Rd1×d2×···×dN is N. An element of T is
denoted as ti1i2···iN

.
A tensor T has rank-1 when T = v1 ⊗ v2 ⊗ · · · ⊗ vN

where ⊗ denotes the tensor product and vi’s are vec-
tors in Rdi , note that T has dimensions d1 × d2 × · · · ×
dN . The element of tensor T is expressed as ti1i2···iN

=
v1i1v2i2 · · · vNiN

where vjij is the ith component of vj.
The rank of a tensor, R=rank (T ) is the minimal number
of rank-1 tensors (Ti) which we can write T like a linear
combination of Ti’s:

∑R
i=1 αiTi.

We can generalize the definition of column and
row spaces of matrices. The mode-n vectors of a ten-
sor, T ∈ Rd1×···×dN , are the vectors that we fixed the
indexes i1, · · · , in−1, in+1, · · · , iN and varying the in-
dex in, as depicted in figure 1 (e.g. mode-1 and mode-2
vectors of a matrix correspond to its columns and rows, re-
spectively). Mode-n flattening is the stacking of mode-n



Figure 1. Mode-n vectors of a 3rd-order ten-
sor of dimensions 6× 7× 5.

Figure 2. T(2) flattening matrix 7× 30 of the
3rd-order tensor in figure 1.

vectors of a tensor as columns in a matrix, denoted as a sub-
script (n) after the tensor name: T(n) or T(n), figure 2
shows an example based on the third-order tensor of fig-
ure 1(c).

A product of two matrices is generalized to a product
of a matrix (M) and a tensor (T ), which is denominated
mode-n product (T ×n M). It is a linear transformation on
all mode-n vectors for M, then the matrix has dimensions
i × j where i = dn and dn is the nth dimension of T ∈
Rd1×···×dn×···×dN , in terms of flattened matrices: P(n) =
MT(n). Given a tensor (T ∈ Rd1×···×dm×···×dn×···×dN )
and two matrices Mim×jm ,Nin×jn where jm = dm and
jn = dn, n 6= m the following property holds true:

T ×m M×n N = T ×n N×m M

The Singular Value Decomposition Theorem (SVD) [5]
states that any matrix M can be decomposed as:

M = UΣVT

where Σ is diagonal and U and V are orthogonal matrices,
in tensor notation it is written as M = Σ ×1 U ×2 V. The

N-mode SVD (higher-order SVD) is a generalization of the
SVD assuring that any tensor T can be decomposed as:

T = C ×1 U1 ×2 U2 ×3 · · · ×N UN

where Ui is the equivalent to matrix U of SVD on
T(i) = UΣVT (from the SVD theorem). Unlike in
the SVD, the tensor C (core tensor) isn’t a diagonal ten-
sor (this is an example of some properties which dont gen-
eralize well to tensors). The N-mode SVD algorithm from
[10]:

1. For n = 1, · · · , N, compute matrix Un by
computing the SVD of the flattened
matrix T(n) and setting Un to be the
left matrix of the SVD

2. Solve for the core tensor (C) as
follows:

C = T ×1 U−1
1 ×2 U−1

2 ×3 · · · ×N U−1
N

= T ×1 UT
1 ×2 UT

2 ×3 · · · ×N UT
N

4. Multilinear AAM Expression Transfer

Following the assumption that “a good analysis is the
first step to a good (re)synthesis”, we approach the expres-
sion transfer problem with methods developed by the com-
puter vision community for facial expression analysis and
recognition [2, 3, 10, 11, 14]. Combining active appear-
ance models and multilinear analysis, it’s possible to suit-
ably represent and analyze expressive facial images, while
separating both style (subject’s identity) and content (ex-
pressive flavor) from the captured performance [8].

4.1. Method overview

Our method is divided in three major steps (the first two
are performed off-line): data acquisition, training and ex-
pression transfer.

Data acquisition. As an example-based approach, our
method relies on a collection of images with different sub-
jects performing a variety of expressions under a con-
trolled capture session. After the image acquisition, the
photographs are annotated according to subject identity, ex-
pression performed (neutral plus the six basic expressions
[4]: anger, fear, surprise, disgust, sadness and happi-
ness) and landmark points positions. Figure 3 depicts the
positioning of the landmark points on one of our train-
ing examples.

Training. Given the annotated images, a two-phase train-
ing process begins. First, an Independent AAM statistical
model of the facial images is built [2, 3, 7]. After that, we
have a compact representation for each training example



Figure 3. Landmark points and template tri-
angulation.

which are structured in two (shape and appearance) third-
order tensors whose mode spaces correspond to the anno-
tations (Identity × Expression × AAM Coefficients). Ap-
plying a Multilinear Analysis procedure over these two ten-
sors, we are able to separate the identity and expression fac-
tors hidden in the coefficients [10].

Expression transfer. Given a pair of photographs of two
subjects performing different expressions, the Independent
AAM’s coefficients are estimated for each image [7, 1].
These coefficients are then projected on each tensor to sepa-
rate the identity and expression parameters. After this anal-
ysis, the expression transfer process is straightforward: the
new AAM coefficients are reconstructed with the expres-
sion parameters exchanged between the two subjects and
are used in the AAM reconstruction process to give the new
shape and appearance of the transfered faces.

In the following, we detail the core steps of our Multilin-
ear AAM Expression Transfer method.

4.2. Training (AAM’s + Multilinear Analysis)

Our training methodology is inspired by the work of [12]
and highly influenced by the approach presented in [14], al-
thought it is adapted to fit more naturaly with fast AAM pa-
rameter estimation methods like the one proposed by [7, 1].
It is subdivided in the training of Independent AAM’s, for fa-
cial image representation, and Multilinear Analysis, to sep-
arate style and content in data.

Training Independent AAM’s. With the annotated ex-
emplars in hand, the first step in the independent AAM’s
training process is the Procrustes analysis of the landmark
points sets (resulting in a database of landmarks aligned
to a common coordinate frame, the shape database). Af-
ter that, the exemplar images are warped to the mean of
the aligned landmarks sets and [optionaly] have their color
space converted, providing a database of aligned facial im-

Figure 4. Training pipeline (Independent
AAM’s + Multilinear Analysis).

ages, the appearance database. A Principal Component
Analysis (PCA) is performed [separately] in both the shape
and appearance databases resulting in:

• a mean shape (s0), an orthonormal basis ({sk}) for the
facial shape space and the coefficients ({σi}) for each
element from the shape database, with respect to {sk};

• a mean appearance (a0), an orthonormal basis ({ak})
for the facial appearance space and the coefficients
({αi}) for each element from the appearance database,
with respect to {ak}.

Multilinear Analysis. With the shape and appearance co-
efficients from the AAM training (and their respective iden-
tity and expression annotations), two third-order tensors are
built and Multilinear Analysis is applied to each of them,
providing:

• a third-order (Identity× Expression× AAM Shape Co-
efficients) shape core tensor (S) and two mode-space
basis matrices (USI , for the identity mode, and USE ,
for the expression mode);

• a third-order (Identity × Expression × AAM Appear-
ance Coefficients) appearance core tensor (A) and two
mode-space basis matrices (UAI , for the identity mode
and UAE , for the expression mode).

The whole training process is depicted in Figure 4.



4.3. Expression Transfer

Our expression transfer procedure relies on the training
phase to be able to analyze the input photographs and ex-
tract information about the style and content from them,
making possible to feed the learned generative statistical
model of the face space with the target style (identity) and
the source content (expression). The proposed method is
subdivided in two basic steps: analysis and (re)synthesis.
Analysis. To transfer the expression from one performance
to another, it’s necessary to extract this expression from the
image (separated from the identity “footprint” of the per-
son that is performing it). Therefore, we estimate the iden-
tity and expression parameters that best “explain” the input
photographs (as well as the location, alignment parameters,
of the faces in these images).

Independent AAM fitting. The first step in the analy-
sis process consists in fitting the AAM coefficients (and the
alignment transformation matrix T) to the inputs1. Meth-
ods like the one proposed by [7, 1] estimate all these pa-
rameters simultaneous and automaticaly by an optimization
procedure. As a proof-of-concept system, we have imple-
mented this step as semi-automatic process: a user adjusts
the template triangulation (depicted in Figure 3) to both
photographs and the system aligns the resulting mesh to the
mean shape acquired in the training process and warps the
images to this mean (in the same manner as done at the
training step). After that, both the shape and appearance co-
efficients are calculated by projecting the aligned shape (mi-
nus s0) and warped image (minus a0) onto their respective
basis ({sk} and {ak}), computed in the training process,
this procedure is detailed below:

σ = ST · (s− s0)
α = AT · (a− a0)

where σ and α are, respectively, the shape and appear-
ance coefficients (i.e. the projection of s, the aligned user-
marked shape, and a, the warped image), S and A are ma-
trices whose columns comprise the orthonormal bases for
the shape and appearance spaces learned in the training pro-
cess.

Tensor projection. Having the AAM shape and ap-
pearance coefficients, a second projection is performed to
separate the identity and expression parameters from them.
This step consists of calculating is, es, ia and ea such that:

(is, es) = argmin
(i,e)

‖σ − S ×I i×E e‖

1 Note that, if the example images had their color spaces converted prior
to the AAM training process, the inputs to the expression transfer pro-
cedure must have their color spaces converted accordingly.

(ia, ea) = argmin
(i,e)

‖α−A×I i×E e‖

We have tried the “projection tensor” operator of [11] but
had many problems with its quality. Further analyzing this
operator, we verified that the tensors resulting from an ap-
plication of the “projection tensor” have full effective rank,
so rank one approximations of them tend to produce poor
projection results. To overcome this issue, we have devel-
oped a method that requires from the user a “calibration
image” for each performer where he is photographed mak-
ing one of the six basic expressions (in our implementation,
we require a neutral expression photograph for each per-
former). From each calibration image, we extract its AAM
coefficients (following the same procedure described previ-
ously) and calculate the identity vectors (is and ia) by solv-
ing the linear systems (by standard linear least squares):

σcalibration = S ×I is ×E ns

= (S ×E ns)×I is
= Is(is)

αcalibration = A×I ia ×E na

= (A×E na)×I ia
= Ia(ia)

where ns and na denote, respectively, the columns of USE

and UAE that correspond to the neutral expression, Is and
Ia are the linear operators defined as:

Is(is) = (S ×E ns)×I is
Ia(ia) = (A×E na)×I ia

With the identity coefficients of each performer, we are able
to calculate the expression vectors (es and ea) for any im-
age in an analogous manner to that applied in the computa-
tion of is and ia:

σ = (S ×I is)×E es

= Es(es)
α = (A×I ia)×E ea

= Ea(ea)

where Es and Ea are the linear operators defined as:

Es(es) = (S ×I is)×E es

Ea(ea) = (A×I ia)×E ea

Therefore, by requiring one calibration image for each dif-
ferent performer, we are able to calculate is, es, ia and ea

solving just a couple of overconstrained linear systems.
Note that, if the performers don’t change in repeated ses-
sions, just two linear least squares must be computed for
each expression transfer (i.e. the calibration step needs to
be done just once).



(Re)synthesis. After the analysis phase, the process of ex-
pression transfer is straightforward. It consists of using the
target identity coefficients (its and ita) along with the source
expression vectors (es

s and es
a) to reconstruct the new AAM

parameters that will be responsible to generate the new fa-
cial image.

AAM parameters reconstruction. The reconstruc-
tion of the new AAM parameters (σ′ and α′) can be per-
formed by evaluating the multilinear operators S and A
on the pairs (its, e

s
s) and (ita, es

a). This calculation is real-
ized as two mode products for each core tensor:

σ′ = S ×I its ×E es
s

α′ = A×I ita ×E es
a

Facial image resynthesis. At this point, we have both
the shape and appearance coefficients for an image of the
target identity performing the source expression. To recon-
struct the aligned shape (s′) and the normalized appear-
ance (a′), we need to evaluate the trained active appearance
model on the calculated parameters:

s′ = s0 + S · σ′
a′ = a0 + A · α′

with this data2 (and the alignment transformation T′, ex-
tracted in the analysis step), we are able to calculate the lo-
cation of the new landmark points and warp a′ to it. Over-
laying this warped image on the input photograph, the ex-
pression transfer task is done. Figure 5 depicts this process.

5. Results

We have performed a number of different experiments to
evaluate the quality of our method. Each one of these was
designed to assess a specific step in our pipeline and was
executed on a large number of cases. After describing the
training and test sets, we discuss some of the representative
results obtained on each experiment.

Test images. The image database we have used is a sub-
set of “The FG-Net Facial Expressions and Emotions
Database”, kindly provided by Prof. Frank Wallhof from
the Technische Universität München [13]. It features im-
ages of 19 subjects performing the 6 basic expressions
(plus neutral) rougly under the same illumination con-
ditions (but with “very soft” restrictions to head pose).
From this data set, we used the images of 17 subjects to
train our model and the remaining 2 to apply the test ex-
periments (i.e. all the presented results were evaluated on

2 Again, if the example images had their color spaces converted prior
to the AAM training process, the output a′ must have its color space
converted accordingly.

Figure 5. Multilinear AAM Expression Trans-
fer pipeline.

subjects that weren’t used in the training process). Fig-
ure 6 shows some of the original test images.

Note: All these experiments were performed on 6 dif-
ferently trained models. The tested settings varied in the
color space processing prior to training (RGB or luminance)
and in the amount of total variance kept in the two princi-
pal component analyses (95%, 98% or 100%). To be more
practical, without sacrificing method, the results shown in
this paper were drawn from those in that the PCAs kept only
95% of the total variance.

Projections. In this experiment we evaluate the quality of
using our combination of AAM’s and Multilinear Analy-
sis to model the expressive facial images space. The inputs
are processed by the analysis phase in the expression trans-
fer procedure but are resynthesized with their own estimated
identity and expression vectors (the swap of expression co-
efficients is not applied). This experiment allows us to as-
sess the amount of loss induced by the analysis phase. Fig-
ure 7 exhibit the projections of the test images in the fig-
ure 6.

“Basic expression” assignment. The intent of this experi-
ment is to evaluate both the ability of the analysis phase in
separating style and content in a given image, as well as the
quality of resynthesizing a performance with one of the ba-
sic expressions. To this end, the inputs are processed by the
analysis phase in the expression transfer procedure but are
resynthesized with the coefficients of the basic expressions



Figure 6. Original test photographs.

(the columns of USE and UAE). Figure 8 shows some as-
signments.

Expression transfer. This experiment is the final applica-
tion of our algorithm. Photographs of both test subjects are
taken where each one is performing a different expression,
the goal is to swap the expression between them in such a
way that the underlying emotion might be “perceived” as
natural in the resynthesized performer’s face (not just a di-
rect mapping of facial motions). Figure 9 shows some of
our results.

6. Conclusion

We have presented a method to transfer expressions be-
tween photographs based on a combination of active ap-
pearance models and multilinear analysis. As evidenced
by our results, our data-driven approach recognizes expres-
sions and resynthesizes color images of faces from differ-
ent unknown subjects. As little difference was observed
between RGB and L*a*b* transfers, and working with
luminance-based AAM’s saves about 2

3 of storage require-
ments, a good balance between quality and resource con-
sumption can be achieved with an L*a*b*-based approach.

The use of methods designed primarily for analysis is a
good starting point for example-based resynthesis, but our
choices incur some limitations (to be worked on). Active ap-
pearance models provide an effective way to represent fa-
cial images, however their fitting is very sensitive to varia-
tions in illumination conditions. Although multilinear anal-
ysis is a very good approach to model problems involving
multiple factors, a great amount of data is needed to com-
plete a full tensor, leading to various challenges in data ac-
quisition, storage and management.

Future work. Experiment with video rewrite and puppetry
(and problems related to the modeling of the complex dy-
namics of facial expressions). Evaluate a rigid-motion in-
variant representation for feature-points (eliminate spurious
variations from the alignment transformations). Incorporate
a new viseme mode to our model (comprising a 4th-order
tensor) in a manner similar to that proposed in [12]. Evalu-
ate the quality of other non-linear dimensionality reduction
methods. Extend theses approaches to model and animate
3D puppets from monocular video streams.
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Figure 7. Projections of test images from
figure 6. Right column: L*a*b* luminance
database; Left column: RGB trained model.

Figure 8. Assigning a happy expression to
the neutral image of the male subject at
“figure 6 (a)” and an surprise to the fe-
male’s at “figure 6 (b)”; Top row: L*a*b* lu-
minance trained model; Bottom row: RGB
trained model.

Figure 9. Exchanging the expressions
performed between both subjects “fig-
ure 6 (c) � figure 6 (d)”; Top row: L*a*b* lu-
minance trained model; Bottom row: RGB
trained model.


