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Abstract

In most of video shot boundary detection algorithms,
proposed in the literature, several parameters and thresh-
olds have to be set in order to achieve good results. In
this paper, to get rid of parameters and thresholds, we ex-
plore a supervised classification method for video shot
segmentation. We transform the temporal segmenta-
tion into a class categorization issue. Our approach defines
a uniform framework for combining different kinds of fea-
tures extracted from the video. Our method does not re-
quire any pre-processing step to compensate motion or
post-processing filtering to eliminate false detected tran-
sitions. The experiments, following strictly the TRECVID
2002 competition protocol, provide very good results deal-
ing with a large amount of features thanks to our
kernel-based SVM classification method.

1. Introduction

The development of shot boundary detection algorithms
was initiated some decades ago with the intention of detect-
ing sharp cuts in video sequences. A vast majority of all
works published in the area of content-based video analysis
and retrieval are related in one way or another with the prob-
lem of shot boundary detection. Indeed, solving the problem
of shot boundary detection is one of the principal prerequi-
sites for revealing video content structure in a higher level.

A common approach to detect shot boundaries is com-
puting the difference between two adjacent frames (color,
motion, edge and/or texture features) and compare this dif-
ference to a preset threshold (threshold-based approach).
Del Bimbo [7], Brunelli et al. [4], Lienhart [16] collect ex-
tensive reviews of this set of techniques. The main draw-
back of these approaches lies in detecting different kinds of
transitions with a unique threshold. To cope with this prob-

lem, video shot segmentation may be seen, from a different
perspective, as a categorization task. There have only been
a few machine learning approaches proposed to overcome
this problem. Boreczky et al. [3] apply HMMs with sep-
arate states to model shot cuts, fades, dissolves, pans and
zooms. Gunsel et al. [11] consider temporal video segmen-
tation as a 2-class clustering problem (“scene change” and
“no scene change”) and use K-means to cluster frame differ-
ences. Different supervised approaches were proposed by
[19], [1] and [2]. Recently Ewerth et al. proposed an unsu-
pervised approach [8].

The work presented in this paper focuses on the exploita-
tion of features based on frame differences (histograms,
projection histogram, Fourier-Mellin moments and phase
correlation method) for abrupt transition (cut) detection.
After the feature extraction step, these features are clas-
sified by Support Vector Machines(introduced as a ma-
chine learning method by Cortes and Vapnik [6]). Further-
more, SVM have been successfully applied in many real
world problems and in several areas: text categorization
[13], handwritten digit recognition [25] and object recog-
nition [17], etc.

Most of previous works in cut detection consider a low
number of features because of computational and classifier
limitations. Then to compensate this reduced amount of in-
formation, they need pre-processing steps, like motion com-
pensation. Our kernel-based SVM approach can efficiently
deal with a large number of features in order to get a robust
classification: better handle of illumination changes and fast
move problems, without any pre-processing step.

This paper is organized as follows. In section 2, we
present the machine learning approach for cut detection
used in this work. In section 3, we detail the visual fea-
tures used for classification and evaluate the similarity mea-
sures applied for matching visual information. We present
our modified phase correlation feature, in section 4. In sec-
tion 5, we describe our kernel-based SVM classifier. In sec-
tion 6, we present the results of the proposed method. In



section 7, we conclude and we present future work.

2. Machine Learning approach

Statistical learning approaches have been recently in-
troduced in multimedia information retrieval context and
have been very successful [23]. For instance, discrimination
methods (from statistical learning) may significantly im-
prove the effectiveness of visual information retrieval tasks.

The system that we propose in this paper deals with a sta-
tistical learning approach for video cut detection. However,
our classification framework is specific. Figure 1 shows the
steps of the approach. First, the feature extraction process
captures different information of each frame. We extract,
for every frame in the video stream a feature vector, then
a pairwise similarity measure is calculated. We test differ-
ent distance metrics:L1 norm, cosine similarity, histogram
intersection andχ2 distance (see Sec. 4 for more details).
Then, each dissimilarity feature vector (distance for each
type of feature: color histogram, moments and projection
histograms) is used as an input in the classifier. As soon as
we use a lot of features, the dimension of the input classifi-
cation space is high.

With vectors of high dimensionality, artifacts appear,
known as the result of the curse of dimensionality [12]. The
theory of kernel functions [22], associated with efficient
heuristics for classification (as SVM margin maximization)
allow to have flexibility and complexity control.

Using a kernel function leads to a set of classification
methods. For Pattern Recognition, statistical learning tech-
niques such as nearest neighbors [12], support vector ma-
chines, bayes classifiers have been used.

SVM have been successful for many multimedia applica-
tion problems [13], [17], and we have also previously shown
that SVM are highly adapted to the image retrieval context
[10]. Thus, we adopted here SVM as classification method.
The decision function (previously trained using a data set
selected for that purpose) provides as a result the binary la-
bels, i.e., if the frame is detected as a “cut” or “non cut”.

The advantage of this approach is that all the thresh-
olds are tuned by the classifier. Thus, the number of fea-
tures do not represent an issue. Another advantage of the
approach is that with many features it is possible to bet-
ter describe the information content in the frame and avoid
the pre-processing step. We denote with subscripth vecto-
rial/histogram features to discriminate them from scalar fea-
tures (PC and Var).

3. Visual features

Cuts generally correspond to an abrupt change between
two consecutive images in the sequence. Automatic detec-
tion is based on the information extracted from the shots

Figure 1. Learning-based Approach for video
cut detection. Feature vectors Fh, Zh, . . . Ch

represent Fourier Mellin moments, Zernike
moments, Color histogram (RGB, HSV and R-
G), from frame ft. The other features are de-
tailed in Section 3. dt = D(ft, ft+1) is the sim-
ilarity distance for each feature where D is
one of the similarity measure detailed in Sec-
tion 4. The SVM classifier is detailed in Sec-
tion 5.

(brightness, color distribution, motion, edges, etc.). Cut de-
tection between shots with little motion and constant illu-
mination, is usually done by looking for sharp brightness
changes. However, brightness changes cannot be easily re-
lated to transition between two shots, in the presence of con-
tinuous object motion, or camera movements, or change of
illumination. Thus, we need to combine different and more
complex visual features to avoid such problems. In the next
subsections we will review the main visual features used for
shot boundary detection.

3.1. Color Histogram

Let I(x, y) be a color image of sizem × n, which con-
sists of three channelsI = (I1, I2, I3), the color histogram
used here is:



hc(b) = 1
m×n

∑m−1
x=0

∑n−1
y=0

{
1 if I(x, y) in bin b
0 otherwise

(1)
The color spaces used in this work are the RGB, HSV
and opponent color (brightness-independent chromaticities
space). Usually the number of bits per channel is set to 2 or
3 in order to reduce sensitivity to noise and slight light, ob-
ject as well as view changes [16]. In the case of RGB and
HSV we consider 2 bits per channel.

The opponent color representation of RGB color space
is defined as: (R + G + B,R−G, B −R−G). By choos-
ing this color space, the proposed cut detection algorithm is
less sensitive to lighting changes. The advantage of this rep-
resentation is that the last two chromaticity axes are invari-
ant to changes in illumination intensity and shadows. In our
approach we use the second channel of the opponent color
space, i.e.,R−G and compute a histogram of 64 bins.

These features are stored in vectors denotedRGBh,
HSVh, R−Gh, . . .

3.2. Shape descriptors

As shape descriptor we use ortogonal moments like
Zernike moments [14] and Fourier-Mellin moments [15].

3.2.1. Zernike momentsThe Zernike moment, of order
pq, is defined as :

Zpq =
p + 1

π

∫ 2π

0

∫ 1

0

I(ρ, θ)V ∗
pq(ρ, θ)ρdρdθ (2)

wherep = 0, 1, 2, . . . ,∞ defines the order,I(ρ, θ) is the
image luminance in polar coordinates (ρ, θ), while q is an
integer depicting the angular dependence, or rotation. The
Zernike polynomialVpq is a set of complex polynomials
which form a complete orthogonal basis set defined on the
unit circle and{}∗ denotes the conjugate in complex do-
main [14, 27]. Moments of order 5 (p = 5, |q| ≤ p with
p − |q|even) are computed for each frame, and arranged in
a vector denotedZh.

3.2.2. Fourier-Mellin moments Upq is the ortogo-
nal Fourier-Mellin function of orderp, q (uniformly dis-
tributed over the unit circle) defined as:

Upq(ρ, θ) = Qp(ρ)e−jqθ, (3)

and the orthogonal Fourier-Mellin momentsFpq are defined
as:

Fpq =
p + 1

π

∫ 2π

0

∫ 1

0

I(ρ, θ)Upq(ρ, θ)ρdρdθ (4)

whereI(ρ, θ) is the image luminance in polar coordinates
(ρ, θ), q = 0,±1,±2, . . . is the circular harmonic order,

the order of the Mellin radial transform is an integerp with
p ≥ 0. For a given degreep and circular harmonic order
q, Qp(ρ) = 0 hasp zeros. The number of zeros in a ra-
dial polynomial corresponds to the capacity of the polyno-
mials to describe high frequency components of the image.
Therefore, for representing an image over the same level of
quality, the order ofp ortogonal Fourier-Mellin is always
less than the order of other moments [15]. Moments of or-
der 4 (p = 4 and|q| ≤ p) are computed for each frame, all
of them arranged in a vector denotedFh.

3.3. Projection histograms

Projection is defined as an operation that maps the im-
age luminance into a one-dimensional array called projec-
tion histogram [24]. Two types of projection (vertical and
horizontal):

Mhor(y) =
1

x2 − x1

∫ x2

x1

I(x, y)dx (5)

Mver(x) =
1

y2 − y1

∫ y2

y1

I(x, y)dy (6)

These features are stored in vectors denotedVh andHh

3.4. Similarity measures

Here, we describe the similarity measures used for
matching visual information. The similarity is deter-
mined as a distance between 2 extracted vectors repre-
senting one feature (for example Zernike moments:Zh) or
concatenation of several features (for example Zernike mo-
ments and color histograms:{Zh,HSVh}). Feature vectors
are considered as histograms in terms of similarity mea-
sure and thus denoted with the generic nameHt for frame
ft.

The distance usually used is aL1 norm between feature
vectorsHt andHt+1.
The cosine dissimilarity [20] between two vectors is defined
as:

dt = D(ft, ft+1) =

∑u
j=0(Ht(j)×Ht+1(j))√∑u

j=0 Ht(j)×
√∑u

j=0 Ht+1(j)
(7)

whereHt(j) is j−th bin of the vector of thet−th frame.
Histogram intersection is defined as:

dt = D(ft, ft+1) = 1−
∑u

j=0 min(Ht(j),Ht+1(j))∑u
j=0 Ht(j)

(8)

Another dissimilarity metric isχ2:

dt = D(ft, ft+1) =
u∑

j=0

(Ht(j)−Ht+1(j))2

Ht(j) + Ht+1(j)
(9)



4. Phase Correlation Method (PCM)

The phase-correlation method [26] measures the motion
directly from the phase correlation map (shift in the spatial
domain is reflected as a phase change in the spectrum do-
main). This method is based on block matching: each block
r in frame ft is sought the best match in the neighbour-
hood around the corresponding block in frameft+1. In this
work a block size of 32× 32 was chosen. The PCM for one
block is defined as:

ρ(rt) =
FT−1{r̂t(ω)r̂t+1

∗(ω)}√∫
|r̂t(ω)|2dω

∫
|r̂t+1(ω)|2dω

(10)

whereρ is the spatial coordinate vector andω is the spa-
tial frequency coordinate vector,̂rt(ω) denotes the Fourier
transform of blockrt, FT−1 denotes the inverse Fourier
transform and{}∗ is the complex conjugate.

By applying a high-pass filter and performing nor-
malised correlation this method is robust to global illumi-
nation changes [18]. Porter [18] suggest the use of the max-
imum correlation value as a measure for each block, but
one problem with this measure is that we do not have infor-
mation of the neighbors of the maximum correlation value.
Instead of using that measure, we propose the use of the en-
tropy Er of the block r as thegoodness-of-fitmeasure
for each block. The entropy give us global informa-
tion of the block, not only information for a single element
of the block.

The similarity metric PC is defined by the median of all
block entropies instead of the mean to prevent outliers [18].

PC = median(Er) (11)

Although, the PC feature is particularly relevant in pres-
ence of illumination changes, it provides false positive cuts
for “black” frames due to Mpeg-1 artifacts. In order to over-
come this limitation, we add the illumination variance (Var).
Indeed, two “black” frames PC will be high like for non-
similar images while variance will be little in the first case
and high in the second. Indeed, the PC feature of two suc-
cessive ”black” frames will be high like in case of two non-
similar frames while variance will allow us to discriminate
these configurations.

5. Cut / non cut classification

There are some learning approaches that use SVM as
classifier. More recently, Qi et al. [19] transform the tem-
poral segmentation into a multi-class categorization. For
the classification task they compare different binary clas-
sifiers: k−nearest-neighbor classifier (KNN), the Naı̈ve
Bayes probabilistic classification, and SVM. Since its cre-

ation in 2001 TRECVID1 has become the reference frame-
work to propose and compare new approaches. IBM system
[2] consists of extraction modules for local and global vi-
sual features. The algorithm is based on a finite state
machine and the features are classified by a SVM. R. Ew-
erth and B. Freisleben [8] propose an unsupervised learning
approach based on a sliding estimation window and an ad-
equate measure of clustering quality. Adcock et al. [1]
present an approach combining pairwise similarity and su-
pervised classification, they used a KNN. Regarding the in-
crease of classification methods proposed for TRECVID
and the quality of their results, these approaches ap-
pear promising for the task of shot boundary detection.
Based on these successful experiences we adopted a ma-
chine learning approach.

The classification problem can be restricted to a two-
class problem. The goal is, then, to separate the two classes
with a function induced from available examples. We hope
to produce, hence, a classifier that will properly work on
unknown examples, i.e. which generalises efficiently the
classes defined from the examples.

The SVM have been developed as a robust tool for clas-
sification and regression in noisy and complex domains as
multimedia retrieval [17, 23]. SVM can be used to extract
valuable information from data sets and construct fast clas-
sification algorithms for massive data. Another important
characteristic of the SVM classifier is to allow a non-linear
classification without requiring explicitly a non-linear algo-
rithm thanks to kernel theory. We adopted SVM with kernel
framework that perfectly matches with our binary classifi-
cation problem with non linear high dimensional data.

In kernel framework data points may be mapped into a
higher dimensional feature space, where a separating hy-
perplane can be found. We can avoid to explicitly compute
the mapping using the kernel trick which evaluates similar-
ities between dataK(dt, ds) in the input space.

Common kernel functions are: linear, polynomial, gaus-
sian radial basis, gaussian withχ2 distance (Gauss-χ2)
K(dt, ds) = e−χ2(dt,ds)/2σ2

and triangular kernel [9]
K(dt, ds) = −||dt − ds||. Each kernel function re-
sults in a different type of decision boundary.

Our kernel-based SVM approach can thus efficiently
deal with a large number of features in order to get a ro-
bust classification.

6. Experimentation

6.1. Data set

The training set consists of a single video of 9078 frames
(5mins. 2 secs.) with 128 cuts and 8950 non cuts. This video

1 A video retrieval algorithm competition



Run Features
1 HSVh, Fh, Zh, Hh, PC, Var
2 R−Gh, HSVh, RGBh, Fh, Zh, PC, Var
3 R−Gh, HSVh, RGBh, Fh, Hh, PC, Var
4 HSVh, RGBh, Fh, Zh, PC, Var
5 HSVh, RGBh, Fh, Zh, Hh, PC, Var
6 RGBh, Fh, Zh, Vh, PC, Var
7 RGBh, Fh, Zh, Vh, Hh, PC, Var
8 HSVh, RGBh, Fh, Zh, Vh, Hh, PC, Var
9 R−Gh, HSVh, RGBh, Fh, Zh, Hh, PC, Var
10 R−Gh, HSVh, RGBh, Fh, Zh, Hh, Vh, PC, Var

Table 1. Combination set of visual features
used in our tests.

is captured from a brazilian TV-station and is composed by
a segment of commercials. The training video was labeled
manually by ourselves.

The test set used in our experiments is TRECVID-2002
Video Data Set (the only set that the ground truth is pub-
licly available). The shot boundary test collection contains
4 hours and 51 minutes of video. The video are mostly
of a documentary/educational nature, but very varied in
age, production style, and quality. At a total, there were 18
videos in MPEG-1 with a total size of 2.88 gigabytes. For
all videos, shot segmentation reference data had been man-
ually constructed by NIST.

We strictly follow the TRECVID-2002 protocol in our
tests. We run our algorithm on all the TRECVID test set
and provide the mean precision and the mean recall ob-
tained. We can provide up to 10 different runs (10 differ-
ent choices of parameters, features or kernels). We use the
precision, recall andF1 statistics defined in TRECVID pro-
tocol:

F1 =
2× Precision× Recall

Precision+ Recall
. (12)

6.2. Features

The nomenclature used for the features is as follows:
RGBh, HSVh andR−Gh color histograms, Zernike (Zh)
and Fourier-Mellin (Fh) moments , Horizontal (Hh) and
Vertical (Vh) projection histograms, Phase correlation (PC)
and Variance (Var). In Table 1, we present the visual fea-
ture vectors used in our tests.

Figure 2 shows the precision/recall measure for all the
sets presented in Table 1. Each set of features was tested
with each kernel function (linear, polynomial, Gauss-L2,
Gauss-χ2 and triangle), thus we have 5 values for each set
in the figure. We can see in the figure that the best perfor-
mance are executed using (b) cosine dissimilarity and (c)

histogram intersection, where we have precision and recall
values close to one. We made many experiments, and we al-
ways found the best results using these two dissimilarities.
In the case of (a)L1 norm and (d)χ2 distance we got a bet-
ter precision but the recall is not as good as in (b) and (c).

Learning support is robust since with training sets from
different camera, from different compress format, coding,
from different country, situation, the features keep being rel-
evant and stable to detect cuts in different context and envi-
ronment.

6.3. Optimization of kernel functions

We use a SVM classifier and train it with different ker-
nels: linear, polynomial, gaussian with L2 andχ2 distance,
and triangular.

We conducted numerous experiments that provide inter-
esting and meaningful contrast. Table. 2 shows the recall,
precision andF1 measures for the three best similarity mea-
sures for each kernel function, also we present the dissim-
ilarity distance used for comparing the feature vectors and
the features that were used in each run. The Gaussian-χ2

kernel provides the best results over all the other kernel
functions. Thus, our evaluation of kernels functions con-
firms that when distributions are used as feature vectors,
a Gaussian kernel gives excellent results in comparison to
distance-based techniques [10].

6.4. Optimization of training set

In order to reduce the number of support vectors and de-
crease the time consumed for training and testing we reduce
our training set. Instead of using the 5 min. video we seg-
ment it and train our classifier with a 2 min. video that con-
tains 50 cuts. The performance of our system maintains its
accuracy with the advantage that the steps of training and
testing are very fast. In Table 3 we show the recall, pre-
cision andF1 statistics using seven different feature sets.
The choice for kernel is the Gaussian-χ2 (as it is shown in
our experiments it execute the best perform), thus all runs
were executed using this kernel and the dissimilarity mea-
sure used was the cosine metric. We can see that the perfor-
mance is still the same for all the runs.

6.5. TRECVID competition

In Table 4 we show the performance of our system. All
this results, the best ones, are obtained using theχ2 ker-
nel. We present the recall and precision and its respective
variance. The small values of variance shows the stability
of our system. In Figure 3(a) we show the results that were
obtained in the official contest of TRECVID-2002 and com-
pare it with the results of our ten runs Figure 3(b). As shown



(a) (b)

(c) (d)

Figure 2. Precion/Recall measure for the ten feature sets using different dissimilarity measures. In
each figure we present 5 values for each set, which represent the response values for each kernel.
(a) L1 norm (b) cosine dissimilarity, (c) histogram intersection and (d) χ2 distance. ten runs results

in the figure the accuracy and robustness of our approach is
very efficient. Hence, the capacity of generalisation of our
classifier is proven and the combination of the selected fea-
tures performs good results without any pre-processing or
post-processing.

7. Conclusion and future works

This paper considers cut detection from a supervised
classification perspective. Previous detecting cut classifi-
cation approaches consider few visual features because of
computational limitations. As a consequence of this lack
of visual information, these methods need pre-processing
and post-processing steps, in order to simplify the detec-
tion in case of illumination changes, fast moving objects
or camera motion. We are actually combining the cut de-
tection method with our content- based search engine pre-
viously developed for image retrieval [5] in order to carry
out an interactive content-based video analysis system. The
kernel-based SVM classifier can deal with large feature
vectors. Hence, we combine a large number of visual fea-

Run Recall σrecall Prec. σprec. Diss. meas
1 0.929 0.004 0.923 0.010 χ2 dist.
2 0.944 0.003 0.909 0.014 χ2 dist.
3 0.926 0.003 0.928 0.007 cos
4 0.941 0.003 0.914 0.009 L1
5 0.931 0.003 0.924 0.007 cos
6 0.945 0.003 0.911 0.007 Hist.Int.
7 0.936 0.004 0.919 0.008 Hist.Int.
8 0.936 0.004 0.921 0.009 Hist.Int.
9 0.932 0.003 0.925 0.007 cos
10 0.936 0.005 0.923 0.007 Hist.Int.

Table 4. Performance of our system with χ2
kernel function

tures and avoid any pre-processing or post-precessing step.
We present a supervised statistical learning approach, re-
quiring a small training set. Thus, we do not have to set
any threshold as many methods proposed in the framework



Kernel Recall Precision F1 Diss. Measure Features

0.92 0.90 0.91 Cos. R−Gh, HSVh, RGBh, Fh, Vh, Var, PC
Linear 0.92 0.91 0.91 Cos. HSVh, RGBh, Fh, Zh, Vh, Var, PC

0.92 0.90 0.91 Cos. R−Gh, HSVh, RGBh, Fh, Zh, Vh, Var, PC

0.92 0.90 0.91 L1 R−Gh, HSVh, RGBh, Fh, Zh, Var, PC
Poly 0.91 0.92 0.91 L1 R−Gh, HSVh, Fh, Zh, Vh, Var, PC

0.93 0.90 0.92 L1 HSVh, RGBh, Fh, Zh, Var, PC

0.91 0.90 0.91 Hist.Int. HSVh, RGBh, Fh, Zh, Vh, Hh, Var, PC
Gauss-L2 0.92 0.90 0.91 Hist.Int. R−Gh, RGBh, Fh, Zh, Vh, Hh, Var, PC

0.92 0.90 0.91 Cos. HSVh, RGBh, Fh, Vh, Hh, Var, PC

0.93 0.92 0.93 Cos. R−Gh, HSVh, RGBh, Fh, Zh, Hh, Var, PC
Gauss-$chi2 0.94 0.92 0.93 Cos. HSVh, RGBh, Fh, Zh, Vh, Hh, Var, PC

0.94 0.92 0.93 Cos. R−Gh, HSVh, RGBh, Fh, Zh, Vh, Hh, Var, PC

0.91 0.92 0.92 Cos. HSVh, RGBh, Fh, Vh, Hh, Var, PC
Triangle 0.92 0.91 0.92 Hist.Int. R−Gh, HSVh, RGBh, Fh, Zh, Vh, Hh, Var, PC

0.92 0.92 0.92 Cos. R−Gh, HSVh, RGBh, Fh, Vh, Hh, Var, PC

Table 2. Measure performance for each kernel function.

Complete Train Set 128 Reduced Train Set 50
Recall Prec. F1 Recall Prec. F1 Features

0.92 0.92 0.92 0.90 0.93 0.92 HSVh, Zh, Hh, Var, PC
0.92 0.92 0.92 0.91 0.93 0.92 HSVh, Vh, Hh, Var, PC
0.93 0.90 0.92 0.93 0.91 0.92 HSVh, RGBh, Fh, Hh, Var, PC
0.93 0.91 0.92 0.92 0.92 0.92 HSVh, Zh, Vh, Hh, Var, PC
0.94 0.90 0.92 0.93 0.91 0.92 R−Gh, HSVh, Fh, Hh, Var, PC
0.95 0.90 0.93 0.93 0.91 0.92 HSVh, RGBh, Fh, Zh, Hh, Var, PC
0.94 0.90 0.92 0.93 0.91 0.92 R−Gh, HSVh, RGBh, Fh, Zh, Hh, Var, PC

Table 3. Comparison of performance for 7 feature sets using all training set videos and the reduced
training set videos.

(a) (b)

Figure 3. Precion/Recall measure of performance. (a) show the official results for TRECVID 2002 [21],
(b) show our ten runs results



of TRECVID. We compare our algorithm to the latest re-
sults publicly available. Our method shows excellent per-
formance on the 2002 TREC Video Track Shot Classifica-
tion Task in terms of precision and recall. To confirm the ef-
ficiency of our approach, we are going to participate to the
TRECVID-2006 competition. The next step is to extend our
algorithm for gradual transition detection. For that purpose
new features will be necessary. This will not be an issue
for our kernel-based algorithm which can deal with high or-
der features. We expect our learning-based approach be able
to detect cuts and gradual transitions.
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