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Abstract

We present the assessment of two classification proce-
dures using a Monte Carlo experience and Landsat data.
Classification performance is hard to assess with generality
due to the huge number of variables involved. In this case
we consider the problem of classifying multispectral opti-
cal imagery with pointwise Gaussian Maximum Likelihood
and contextual ICM (Iterated Conditional Modes), with and
without errors in the training stage. Using simulation the
ground truth is known and, therefore, precise comparisons
are possible. The contextual approach proved being supe-
rior than the pointwise one, at the expense of requiring more
computational resources, with both real and simulated data.
Quantitative and qualitative results are discussed.

1. Introduction

The production of thematic cartography is one of the
main goals of remote sensing image processing and anal-
ysis. The aim of this task is producing a map of (possibly
all) homogeneous classes present in the scene. This can be
achieved by means of visual inspection and manual labour,
but digital techniques are more used every day since remote
sensing is widely recognized as the primary source of infor-
mation for cartography.

A thematic map or the overall inventory of classes can be
obtained with classification techniques. Such products are
essential in many applications as, for instance, crops statis-
tics, mining and hydrological resources studies.

Among the classification strategies [8, 12, 14], we deal
with two notorious members of the class of statistical super-
vised techniques. These procedures have three basic steps,
namely training, production and testing, and certain rules
have to be obeyed in order to generate good products.

The multivariate Gaussian law is the most widely used
distribution for modelling image data acquired with optical
remote sensing instruments [16]. This will be the statistical

framework employed in this work, since techniques based
on this distribution are available in most remote sensing im-
age processing platforms. Though the data exhibit a notice-
able spatial structure, that turns into what we perceive as
texture, the spatial correlation will not be considered here.

The spatial correlation of the classes is an important
source of information, specially when high resolution data
is used. This structural information will be modelled using
a Markov Random Field description for the (unobserved)
classes under estimation. Statistical classification using this
model does not become a simple geometric decision rule in
the features space; it becomes, in non-trivial cases, a NP-
complete problem [9].

Among the approximation algorithms for obtaining a so-
lution to this problem, we chose to work with the ICM (It-
erated Conditional Modes), which is among the fastest al-
ternatives being the others computing the MAP (Maximum
a posteriori, that requires simulated annealing) and MPM
(Maximum Posterior Marginals, obtainable only by costly
stochastic simulation) estimators [4].

Using spatial information yields, in principle, better re-
sults than using only spectral (pointwise) evidence, but the
computational requirements increase. The purpose of this
paper is assessing the precision of products obtained by
Maximum Likelihood (ML) and by ICM classifications un-
der different training situations, namely, with and without
errors. In both cases the data were described by the multi-
variate Gaussian distribution.

Training is subjected to errors, since it depends on multi-
ple sources of possibly vague and contradictory information
(visual analysis, previous experience, data acquired by other
sensors and in a different moment etc.). Modelling this er-
ror and assessing its influence on supervised classification
algorithms is another contribution of this paper.

A Monte Carlo experience was devised in order to carry
out this study. Images are simulated and they are automati-
cally classified. In doing so, one has the ground truth before
which the results can be compared.

After making this simulation-based assessment, the tech-



niques are applied to real data: more than fifty samples from
a Landsat ETM+ image with many thematic classes. All
available bands were employed in all but one situation, be-
ing this last one designed to evaluate the impact of partial
information on the classification procedures.

The rest of the paper unfolds as follows. Section 2 re-
calls the basic definitions of statistical classification. Sec-
tion 3 presents the Monte Carlo experiences and the simu-
lation results. Section 4 shows the results of applying the
techniques to a set of real data. Finally, section 5 comments
the results and their consequences.

2. Supervised Statistical Classification

From a mathematical standpoint, a multispectral image
is a three-dimensional real matrix:

z = [z(i, j, k)]0≤i≤M−1,0≤j≤N−1,0≤k≤K−1 ,

z(i, j, k) ∈ R.

The two first dimensions are related to the geographical co-
ordinates of the scene, and determine the size of the support
of the image (M × N ), while the latter is related to the
spectral dimension of the data. We say that the image has
M columns, N rows and K bands, and z(i, j) will denote,
for short, the K dimensional vector observed in site (i, j).
The coordinates can also be dropped for the sake of com-
pactness.

A classification rule is a function that, using the avail-
abe information, defines a set of M × N labels, say c =
[c (i, j)]0≤i≤M−1,0≤j≤N−1. This is not a real matrix, but it
is defined on a set of L possible labels C = {c1, . . . , cL}.
This object should not be regarded as an image, but as a
thematic map.

Supervised statistical classification procedures consist of
providing such a rule by means of decisions based on the
statistical properties of the data, i.e., parameters to be esti-
mated. The steps that these procedures are based upon are
those commented before: training, production and testing.

2.1. Multivariate Gaussian Model

This model assumes that the observations related to each
of the L classes obey different probability laws character-
ized by the probability density function

f�(z) =
exp
(
− 1

2

(
(z − µ�)tM−1

� (z − µ�)
))

(2π)K/2(det(M�))1/2
,

where K is the number of bands, µ� is the vector of means
and M� is the covariance matrix and 1 ≤ � ≤ L is the class
index. This assumption is usually verified in practice, if a
careful choice of classes is made.

The classification rule that stems from this assumption
and the hypothesis of independence among different sites is
assigning the site (i, j) to class c� if

f�(z(i, j)) ≥ f�∗(z(i, j)), (1)

for every 1 ≤ �∗ ≤ L, i.e., if the likelihood of the observa-
tion z(i, j) is maximized by the model of class �. As stated,
this procedure assumes that all classes have the same a pri-
ori probability. In a Bayesian context, this is equivalent to
assigning a non-informative prior to the classes.

In [8] it is shown that this rule is equivalent to decision
regions in the features domain in the form of hyperquadrics;
other distributions induce different hypersurfaces. It is also
easy to see that the rule formulated in equation (1) is equiv-
alent to assigning the site (i, j) to class c� if

− ln(det(M�)) − (z(i, j) − µ�)tM−1
� (z(i, j) − µ�) ≥

− ln(det(M�∗)) − (z(i, j) − µ�∗)tM−1
�∗ (z(i, j) − µ�∗),

for every 1 ≤ �∗ ≤ L.
In most practical situations one has to estimate the pa-

rameters µ� and M� using training samples.

2.2. Markov Random Fields

Real data exhibit a great deal of spatial correlation, and
this issue is notorious with high resolution imagery. This
is due to two main reasons: firstly, the spectral informa-
tion results from the integration of many sources, including
neighboring sites; secondly, classes tend to appear in spa-
cial clusters, e.g. if the true class of a site is “water” it is
likely that its neighboring sites are of the same type.

Spatial information, also known as “context”, can be
modelled as correlation structures in the observed data, or
as spatial dependence among classes, or both. We chose
to work with the second, within a Bayesian framework,
through a model that puts more weight on classes that ex-
hibit spatial correlation.

Markov Random Fields, the spacial generalization of
Markov chains, have deserved a great deal of attention in
the computer vision literature since they were successfully
used in image restoration [6, 11]. The interested reader is
also referred to [17]; they will be reviewed in the following.

Let C = {c1, . . . , cL} be the set of classes that de-
scribes the ground truth. Each element of the support
S = {(i, j) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1} is as-
signed one of these classes, CS is the set of functions on S
with value in C.

A family V = {V(i,j) : (i, j) ∈ S} of subsets of S is a
neighborhood of S if

1. (i, j) /∈ V(i,j) for every (i, j),

2. (i, j) ∈ V(i′,j′) ⇔ (i′, j′) ∈ V(i,j), and



3. S = ∪(i,j)∈SV(i,j).

The pair G = (S,V ) is a graph.
In this work we will consider the so-called “eight-

neighbors structure”: V 2
(i,j) = {(i′, j′) ∈ S : (i′−i)2+(j′−

j)2 ≤ 2, (i′, j′) �= (i, j)}, and V
2 = {V 2

(i,j) : (i, j) ∈ S}
for every (i, j) ∈ S.

A Random Field with space state CS is a random ma-
trix C = [C(i, j)]0≤i≤M−1,0≤j≤N−1 such that C(i, j) is a
random variable with values in C. An outcome of C is an
element of CS . The probability distribution of C on CS

will be denoted by PrC , i.e., for each c ∈ CS one has that
PrC(c) is the probability that C(i, j) = c(i, j) for every
(i, j) ∈ S.

Given a graph G = (S,V ) and a Random Field C with
space state CS , we say that C is a G-Markov Random Field
if for every c ∈ CS and every (i, j) ∈ S holds that

PrC(A | B) = PrC(A | V ),

where A = {c′ : c′(i, j) = c(i, j)}, B = {c′ : c′(i′, j′) =
c(i′, j′),∀(i′, j′) �= (i, j)}, and V = {c′ : c′(i′, j′) =
c(i′, j′),∀(i′, j′) ∈ V(i,j)}. In words, the conditional dis-
tribution of the random variable at site (i, j) given the ob-
servation of all other sites depends only on the observed
outcomes at the neighboring sites V(i,j).

A particular Markov Random Field model, namely the
Potts model, has been widely used to describe the spatial
distribution of classes in thematic maps [5, 6, 17]. In order
to define it, consider β ∈ R a real number. A Random Field
C with space state CS is a Potts model with parameter β
with respect to the graph G = (S,V 2) if

PrC(c) =
Zβ(c)
Zβ

, (2)

where

Zβ(c) = exp

(
β
∑

(i,j)∈S

N(i,j)(c)

)
,

with

N(i,j)(c) = #{(i′, j′) ∈ V 2
(i,j) : c(i′, j′) = c(i, j)},

and the so-called partition function Zβ =
∑

c∈CS Zβ(c).
This model states that the log-probability of observing class
c� at coordinate (i, j) is proportional to β times the number
of neighboring sites where class c� occurred. Positive val-
ues of β assign more probability to maps with clusters of
same classes. Using this model as a prior distribution leads
to a classification rule that takes context into account.

2.3. ICM Algorithm with β unknown

The ICM algorithm is an iterative approach to finding
better solutions than those provided by a pointwise proce-
dure, such as pixelwise Maximum Likelihood. It starts with

an arbitrary solution and improves it replacing the class in
every coordinate by the one that maximizes an objective
function that, in turn, comprises two terms: the evidence
provided by the data (the information on which Gaussian
Maximum Likelihood is based upon) and the evidence pro-
vided by the context.

In our implementation, ICM starts with the pointwise
Gaussian Maximum Likelihood classification. Then, a new
classification is obtained using, for every (i, j) ∈ S, 1 �
� � L, z ∈ R

K , the following decision rule:

g�((i, j),z, c, β) =
1
2
(− log(det(M�)) − (z − µ�)tM−1

� (z − µ�)
)
+

β#{(i′, j′) ∈ V ∗
(i,j) : c(i′, j′) = c�}, (3)

where V ∗
(i,j) = V(i,j)∪{(i, j)}. The first term of the second

member in equation (3) is the same as the pointwise Max-
imum Likelihood classification rule under the Multivariate
Gaussian model. The second term is the contextual com-
ponent that, provided β > 0, puts more weight on those
classes that surround site (i, j).

The contextual influence is quantified by the value of
the parameter β. When β = 0 the rule provided by equa-
tion (3) reduces to pointwise Maximum Likelihood classi-
fication under the Multivariate Gaussian model, i.e., con-
text has no effect on the evidence provided by the observed
data; when β → ∞ the effect is reversed, i.e., the observed
data have no influence on the rule, which is solely the local
mode. This parameter is unknown and, therefore, is has to
be informed.

The literature reports implementations where the value
of β is provided by means of trial-and-error procedures [2].
Our approach consists of estimating it from the available
information by pseudolikelihood [3]: since maximum like-
lihood is not feasible due to the cumbersome form of equa-
tion (2), it is replaced by the product of conditional laws.
This estimation is performed after each iteration, being the
first classification the Gaussian Maximum Likelihood rule
or, equivalently, the rule provided by equation (3) setting
β = 0. An iteration consists of (i) estimating β from the
previous classification and (ii) applying the rule provided in
equation (3). It is observed that the sequence of estimated
parameters is non decreasing, i.e, that β̂(0) ≤ β̂(1) ≤ · · · ,
so one will always end up with a classification with more
homogeneous patches than the first provided as starting so-
lution.

The algorithm proceeds until evidence of convergence is
achieved. In our implementation at least one of two criteria
has to be satisfied in order to stop the procedure: a certain
maximum number of iterations (fixed in 100 in our experi-
ments) or a certain minimum percentage of classes changed
(set to 5%).



2.4. Classification Stages

After image registration, callibration and feature extrac-
tion, supervised classification consists of three stages:

Training: the number of distinct classes is identified, and
representative samples are collected. Part of these
samples are used to estimate the parameters of the
spectral signature of each class (training samples), and
the rest (test samples) is used to assess the overall ac-
curacy of the procedure. If the multivariate Gaussian
distribution is assumed for each class, the vector of
means and the covariance matrix are estimated. Wrong
choices in this stage will propagate errors in an unpre-
dictable way hampering, thus, the quality of the final
product.

Production: Each coordinate is assigned to the class that
satisfies a certain decision rule producing, thus, a the-
matic map.

Testing: the accuracy is estimated checking the class each
test sample is associated to. An error matrix (also
called confusion matrix) is then built, and associated
statistics can be computed such as the Kappa coeffi-
cient of agreement.

3. Precision Assessment by Simulation

Three types of class images were used in this work in
order to describe typical situations that appear in practice:
a hand-painted one (called “Cubism”, see Figure 1(a)) in-
spired in thematic maps, random blocks, and outcomes of
the Potts model.

Maps in the shape of random blocks with L classes are
obtained dividing the support S, which is a square of side
64 or 72 in squares of side 4 or 6, respectively, and drawing
a class independently from the other for every small square;
if the same class is drawn in every small square, the map
is discarded and the procedure begins again. A typical out-
come for a 64 × 64 support and L = 4 is shown in Fig-
ure 1(b).

Figure 1(c) shows a typical outcome of the Potts models,
as defined in equation (2) with four classes and β = 1/2.

In order to make the assessment in as many as possible
representative situations, fourteen situations were consid-
ered: the three types of class images of sizes 64 × 64 × K
and 72 × 72 × K, where K = 3 or 4 bands and 4 or 6
classes. Besides these models, two training situations were
modelled: with and without errors in the training stage. This
last parameter in the simulation is of paramount importance
since, as will be seen, the quality of the training samples
is critical and this issue has not been fully addressed in the
literature.

(a) “Cubism” (b) Random blocks (c) Potts model

Figure 1. Images used in the assessment

The parameter values for each situation, i.e., (µ�,M�),
were chosen with the following rules (see details in Ap-
pendix A):

P1: Real values (as presented in [18]; see Appendix A).

P2: Three classes with comparable low mean values and
three with comparable high mean values; variances for
the classes having comparable values are the same.

P3: The same mean for all the classes; covariances are the
same, and variances are increasing.

P4: All classes with the same mean values, with increasing
variances and covariances.

Table 1 presents the fourteen situations.
Two hundred replications were made in every situation

in order to assess the performance of the pointwise and con-
textual procedures. Each replication consists of assuming a
certain image class, sampling from its distribution if it is
of type random blocks or Potts model, transforming classes
into observations following the assumed models, obtaining
samples for each class (with or without errors), producing
the two classifications and validating them.

The training stage consists of choosing, for each class, a
random sample of sites of size 10% of the observed number
of sites of that class, and using the corresponding observa-
tions for parameter estimation. In the presence of training
errors (situations 4, 6, 8, 9, 10, 12 and 14), 1/10 of those ob-
servations is replaced by data from another class uniformly
chosen among the others.

Since the true class image is known beforehand, it is pos-
sible to compute the actual error matrix and the coefficients
of overall accuracy and Kappa with their respective confi-
dence intervals [1, 7, 10].

The two hundred replications for each situation allow us
to draw the following conclusions:

• Most situations produce values of Kappa higher than
0.70, so most classifications can be considered “good”.

• The lowest coefficients (overall accuracy and Kappa)
were achieved in situations 13 and 14, where there was



Table 1. Parameters for the observations
Situation Image Type Size Classes (µ�,M�) Error

1 Blocks 64 × 64 × 4 4 P1 N
2 Blocks 72 × 72 × 3 6 P2 N
3 Blocks 64 × 64 × 4 4 P3 N
4 Blocks 64 × 64 × 4 4 P3 Y
5 Potts 64 × 64 × 4 4 P1 N
6 Potts 64 × 64 × 4 4 P1 Y
7 Potts 72 × 72 × 3 6 P2 N
8 Potts 72 × 72 × 3 6 P2 Y
9 Potts 64 × 64 × 4 4 P3 Y
10 Potts 64 × 64 × 4 4 P3 Y
11 Cubism 64 × 64 × 3 6 P2 N
12 Cubism 64 × 64 × 3 6 P2 Y
13 Cubism 64 × 64 × 3 6 P4 N
14 Cubism 64 × 64 × 3 6 P4 Y

a high level of confusion: same mean values for every
class and increasing variances and covariances.

• Situations 3 and 4 also produced low coefficients, but
in this case ICM doubled the quality of pixelwise clas-
sification.

• Coefficients computed on ICM classifications are
higher than the others in those situations where train-
ing was subjected to error.

• All coefficients are significatively different, and in
most cases the evidence provided is that ICM is bet-
ter than pixelwise classification.

Figure 2 summarizes some of these results, showing the
95% confidence intervals of the Kappa coefficient in some
of the simulated situations. Light lines correspond to the
Maximum Likelihood algorithm, while thick ones show the
results obtained with ICM. It is clear that ICM significantly
and consistently outperforms ML.

4. Analysis of a Landsat ETM+ image

Jackson and Landgrebe [13] use an ICM algorithm with
fixed values of β, and they show that a contextual classifi-
cation with small samples attains an accuracy comparable
with that obtained with pixelwise maximum likelihood. Ar-
bia et al. [2] also use fixed values of β in a two-class classi-
fication setup using simulated data.

In this paper, two experimental setups were considered:
one where a 400×233 pixels image was analyzed and other
where the whole dataset (6920 × 5960 pixels) was treated.
The first experience aims at assessing the influence of not
using all the available information; ML and ICM classifi-
cations obtained with the three bands that provide the least

separation are compared. In the second setup, 50 subim-
ages were generated from the complete data set in order to
make a quantitative comparison of ML and ICM in real sit-
uations. We estimate β from the available data. No similar
results were found in the literature.

4.1. Setup 1

An area of 400 × 233 pixels from the 229083 Landsat 7
ETM+ image (30 m resolution) acquired in 2000 over the
city of Rı́o Cuarto, Argentina, was analyzed. The 453 RGB
composition of the image is shown in Figure 3(a).

Six thematic classes were identified using prior knowl-
edge, exploratory data analysis and photointerpretation:
River (predominantly Black in the RGB composition, type
# 1, Red in the classification), Urban (Light Blue, # 2,
Green), Bare Soil (Light Green, # 3, Blue), Natural Pas-
ture (Dark Green, # 4, Yellow), Managed Pasture (Orange,
# 6, Cyan) and Trees (Red, # 6, Magenta).

In order to estimate the vectors of means and the covari-
ance matrices, 5672 training samples were chosen (about
6% of all the pixels). These observations were subjected to a
careful exploratory analysis, since the quality of these sam-
ples is paramount for obtaining good results. Test samples
were also identified in order to assess classification accu-
racy; in this study 4041 pixels were labeled as test samples.

The reference classification was obtained with the seven
available bands by ML; it is shown in Figure 3(b) and its
estimated accuracy is 0.86 (see Table 2 for details).

The bands that provided the weakest separation between
classes are 1, 3 and 5; the parameters were estimated using
this information, and ML classification was obtained (see
Figure 3(c). It was then used as the starting point of the
ICM algorithm, that ended with β̂(2) = 0.81 and the clas-



Figure 2. Confidence intervals for Kappa 95%

Table 2. Influence of partial information
Technique, data Acc. Kappa 95% Conf. Int.

ML, 7 bands 0.86 0.8188 [0.8049, 0.8328]
ML, 3 bands 0.79 0.7141 [0.6976, 0.7306]
ICM, 3 bands 0.84 0.7872 [0.7722, 0.8021]
ICM, 7 bands 0.88 0.8447 [0.8317, 0.8579]

sification is shown in Figure 3(d). Quantitative results are
shown in Table 2; all estimated accuracy values are high,
showing that the classification procedure is excellent [15].
ML with all the available information provides an accuracy
of 0.86 but using the three worst bands this figures goes to
0.79; using contextual information on the three worst bands
improves the result to 0.84, which is closer to the accuracy
obtained with seven bands. Confidence intervals for the ac-
curacy show that these values are significantly different. In-
cidentally, the accuracy achieved by ICM and seven bands
is of 0.88; this classification is shown in Figure 3(e). Fig-
ure 3 shows that classifications obtained by ICM are less
grainer than those that employed only spectral information.

4.2. Setup 2

From the complete data set (seven bands 6920 × 5960
image), 50 non-overlapping sub images of size 200 × 160
with seven bands each were generated. Each was subjected

(a) Color composite RGB 453

(b) ML 6 classes 7 bands

(c) ML 6 classes 3 bands

(d) ICM 6 classes 3 bands

(e) ICM 6 classes 7 bands

Figure 3. Color compositon and maps



to visual and descriptive analysis for the identification of
classes, and the number of land covers was 4, 5, 6 or 7.
Training and test areas were then selected, with at least 100
sites for each class, and each image was classified by ML
and ICM. ICM required at most two iterations, and ended
with β̂ ∈ [0.60; 0.85] in all situations, and within the upper
half of the interval in 23 out of 50 situations. After classi-
fication, the Kappa coefficient of agreement (along with its
90% confidence interval) and accuracy were estimated.

In most situations the coefficient of agreement is close
to 1 regardless the classification procedure, so we can con-
clude that both techniques are in good agreement with the
ground truth.

Regarding Kappa, ICM produce equal or better classi-
fications than ML, and in eight out of fifty situations the
improvement is statistically significative at the 90% level.
Figure 4 shows the estimated values of Kappa for both clas-
sification techniques (ML squares and dashed lines, ICM
circles and solid lines) in a few situations.

Figure 4. Kappa from ICM and ML maps

5. Results and Conclusions

The precision of two classification techniques in scenar-
ios that include the modelling of user errors in the training
stage and a variety of spectral situations was assessed with
a Monte Carlo experiment.

Using real data we conclude that (i) training and test
samples were carefully chosen, leading to good classifi-
cation results, and (ii) ICM is always better than ML, but

performs the best when there is less than optimal available
information compensating the lack of dependable spectral
information with contextual evidence.

The evidence collected allows us to say that the ICM
contextual classification technique is the most adequate in
every situation, even if the training data are collected in a
non-dependable manner, so if the computational effort re-
quired is not an issue it is always recommended.
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A. Parameters for each simulation situation

A.1. Situation P1

The parameters are those reported in [18, p. 188], ob-
tained from an image with water, fire burn, vegetation and
urban areas:

µ1 =


44.27
28.82
22.77
13.89

 , µ2 =


42.85
35.02
35.96
29.04

 ,

µ3 =


40.46
30.92
57.50
57.68

 , µ4 =


63.14
60.44
81.84
72.25

 ,

M1 =


14.36 9.55 4.49 1.19
9.55 10.51 3.71 1.11
4.49 3.71 6.95 4.05
1.19 1.11 4.05 7.65

 ,

M2 =


9.38 10.51 12.30 11.00

10.51 20.29 22.10 20.62
12.30 22.10 32.68 27.78
11.00 20.62 27.78 30.23

 ,

M3 =


5.56 3.91 2.04 1.43
3.91 7.46 1.96 0.56
2.04 1.96 19.75 19.71
1.43 0.56 19.71 29.27

 ,

M4 =


43.58 46.42 7.99 −14.86
46.42 60.57 17.38 −9.09
7.99 17.38 67.41 67.57

−14.86 −9.09 67.57 94.27

 .

A.2. Situation P2

Three bands and six classes; three of them with low mean
values and the remaining three with high mean values, same
covariance matrices for classes with close mean values:

µ1 =

0
0
0

 , µ2 =

1
1
1

 , µ3 =

2
2
2

 ,

µ4 =

125
125
125

 , µ5 =

142
142
142

 , µ6 =

234
234
234

 ,

M1 = M2 = M3 =

 0.0100 0.0030 0.0009
0.0030 0.0100 0.0030
0.0009 0.0030 0.0100

 ,

M4 = M5 = M6 =

 25.00 7.50 2.25
7.50 25.00 7.50
2.25 7.50 25.00

 .

A.3. Situation P3

Four classes and four bands; the classes have equal mean
vectors and covariances, being differentiated by the vari-
ances only:

µ1 = µ2 = µ3 = µ4 =


0
0
0
0

 ,

M1 =


1.0000 0.3000 0.0900 0.0081
0.3000 1.0000 0.3000 0.0900
0.0900 0.3000 1.0000 0.3000
0.0081 0.0900 0.3000 1.0000

 ,

M2 =


2.0000 0.3000 0.0900 0.0081
0.3000 2.0000 0.3000 0.0900
0.0900 0.3000 2.0000 0.3000
0.0081 0.0900 0.3000 2.0000

 ,

M3 =


4.0000 0.3000 0.0900 0.0081
0.3000 4.0000 0.3000 0.0900
0.0900 0.3000 4.0000 0.3000
0.0081 0.0900 0.3000 4.0000

 ,

M4 =


8.0000 0.3000 0.0900 0.0081
0.3000 8.0000 0.3000 0.0900
0.0900 0.3000 8.0000 0.3000
0.0081 0.0900 0.3000 8.0000

 .

A.4. Situation P4

Six classes and three bands; the classes have equal zero
mean vectors and proportional covariance matrices:

M1 =

 1.00 0.30 0.09
0.30 1.00 0.30
0.09 0.30 1.00

 ,Mj = j2M1, 2 ≤ j ≤ 6.

B. Computational information

Developments were made in the IDL platform (www.
rsinc.com) and incorporated into ENVI, an image pro-
cessing platform developed in IDL. Plots were produced in
R (www.r-project.org).


