Hardware-assisted Rendering of CSG Models

Fabiano Romeiro Luiz Velho Luiz Henrique de Figueiredo
Harvard University IMPA IMPA
romeiro@fas.harvard.edu Ivelho@impa.br Ihf@impa.br

(a)

(© (d)

Figure 1: (a) CS1000, a cylinder subtracted of 1000 spheres (b) CC1000, a cylinder subtracted of 1000 cones, (c) R9, 9 primitives,

(d) T1022, 1022 primitives

Abstract

Current methods that interactively render reasonably com-
plex CSG objects are image based and are severely band-
width limited. This paper presents a new approach to ray-
tracing CSG objects composed of convex primitives that com-
bines spatial subdivision and ray-tracing methods. By per-
forming spatial subdivision on the CSG object until locally it
is simple enough to be rendered effectively and efficiently on
a GPU, we are able to share the load more evenly between the
CPU and the GPU and depend less on bandwidth and more
on GPU instruction throughput than current methods, hence
obtaining better scalability with newer hardware.

Keywords: CSG, Graphics Hardware, GPU, ray tracing

1 Introduction

One of the most intuitive ways to model solid objects is by
constructing them hierarchically, through combinations of
simpler objects, creating more and more complex ones. Sev-
eral representations that incorporate this paradigm exist, and
CSG [11] is the most popular.

In the CSG representation, solid objects are obtained by suc-
cessive boolean combinations of primitives, and are repre-
sented by the (CSG) expression corresponding to the se-
quence of boolean operations of primitives that led to
them. These CSG expressions are stored as trees called CSG
trees, whose leaves represent primitives and nodes represent
boolean operations.

With each node is also associated a transformation to allow
translation, rotation and scaling of each part of the solid ob-
ject while it is being modeled. Alternatively these transfor-
mations can be applied directly to each leaf node of the sub-
tree rooted at the node the transformation is to be associated
with (in this case, no storing of transformations is needed).

1.1 Prior work and Interactivity

The CSG paradigm is highly advantageous and well suited
for modeling, but much more useful if interactivity can be
achieved as then models can be modified in realtime, greatly
facilitating the design process. Scalability is a serious con-
cern since rendering even reasonably complex CSG objects at
interactive rates is difficult. Since the introduction of CSG,
several approaches have been devised towards that goal (in-
teractivity on ever more complex models). Some methods
involve converting the CSG representation into a boundary
representation and rendering that boundary, but these are
not really suitable for interactive performance. Other meth-
ods are image-based, and some use special purpose hard-
ware to render CSG objects. Goldfeather [4] presented an al-
gorithm for rendering CSG models with convex objects (and
later with non convex objects [5]) using a depth-layering ap-
proach on the Pixel Planes.

Wiegand [17] proposed an implementation of Goldfeather’s
algorithm on standard graphics hardware. Rappoport [10]
converts the CSG representation to a CDA representation
and then uses the stencil buffer to render at interactive rates.
Stewart et al. [13] improved upon Goldfeather’s algorithm
and then introduced the SCS algorithm [14], an improvement
upon [13] and later refined it [15]. Erhart and Tobbler [3],
Gubha et al. [6] and Kirsch and Dollner [9] implemented opti-
mizations over either the SCS, the Goldfeather or the layered
Goldfeather algorithms to better use newer graphics hard-
ware. Adams and Dutre [1] presented an algorithm that
perform interactive boolean operations on free-form solids
bounded by surfels. More recently, Hable and Rossignac [7]
used an approach that combines depth-peeling with the Blist
formulation [12].

So far, the subset of these algorithms that have reached in-
teractivity on decently sized models are image-based and
use either depth layering or depth peeling approaches. For
this reason they are bandwidth limited, and bandwidth of
standard graphics hardware has historically improved at a
rate that is at least an order of magnitude lower than the in-
struction throughput increase rate. They also impose limi-
tations on the number of primitives (due to the number of
planes available in the stencil buffer), unless they use multi-
ple passes.

1.2 Proposed approach

We propose a method whose goal is to be more instruction
throughput limited than bandwidth limited, and that has
no maximum primitive number limit (being limited only by
available memory). Our method also attempts to share the
load between the CPU and the GPU, by performing spatial
subdivision of the CSG object on the CPU and local ray-
tracing of the CSG object on the GPU.

2 Spatial Subdivision

The main insight of our approach is that surfaces of CSG ob-
jects can be (mostly) locally represented by single primitives
(or their complements) or by boolean operations of two prim-
itives (or their complements). The exceptions are points of
the CSG object in the intersection of surfaces of three differ-
ent primitives, e.g., vertices of order 3 or bigger (see figure
2). Since ray-tracing primitives and boolean operations of
two primitives (for three or more the pixel shaders would be
much more complex) can be done efficiently on the GPU (as
will be shown in section 3), rendering the entire CSG object
reduces to:

1. Subdividing it in the CPU until all parts are either (i)
composed of a single primitive or a boolean operation of
two primitives, or (ii) project to less than a given thresh-
old of pixels on the screen (and hence either contain one
of the exception points or is insignificant enough not to
be subdivided further and ignored).

2. Ray-tracing each part that falls on case (i) on the GPU.

Figure 2: Intersection of 3 spheres: The protruding point
lies at the intersection of the surfaces of the 3 spheres, and
hence there exists no open set containing it such that the
representation of the CSG object, when restricted to that
open set, reduces to a single primitive or boolean oper-
ations of just two primitives.Thus no matter how much
we subdivide this object there will always exist one cell,
namely the one containing this point, which does not have
a simple local representation for the CSG object

The above process produces correct results, except for pos-
sibly the pixels corresponding to parts which fell in case
(ii). These, however, correspond to minimal artifacts in most
cases, and can be minimised or enhanced by changing a
threshold. Obviously, the smaller the threshold the more
complex the subdivision will be. The tradeoff is quality over
subdivision complexity and rendering time. For the initial
design of a very complex CSG model, when small artifacts
are of no concern, it might be desirable to use large thresh-
olds in order to increase interactivity (see figure 3).

(V] (d)

Figure 3: (a) Using a threshold of 1 pixel usually produces
no noticeable artifacts. (b) However in some scenes arti-
facts can be quite noticeable with that threshold, as evi-
denced by the zoom in on the walls. (c) Using smaller
thresholds improves image quality by reducing artifacts
and (d) increasing the threshold produces the opposite ef-
fect.

2.1 Spatial subdivision structures

A modified octree structure is used to perform the subdivi-
sion of the CSG object. On each level we divide the cells in
two instead of in eight, as in traditional octrees. This division
is carried sequentially on the X, y and z coordinates, in a cyclic
manner, making it a sequenced Kd-tree. This binary subdivi-
sion greatly improves the CSG tree simplification procedure
(see section 2.2.1).

Along with each cell of the octree we keep a CSG tree struc-
ture that holds the simplestlocal representation of the surface
of the original CSG object. All these structures are stored in
main memory and the subdivision is performed on the CPU.

2.2 Octree Subdivision

The subdivision starts with the (axis aligned) bounding box
of the CSG object as the initial cell of the octree. We set this
cell’s CSG tree to a copy of the CSG tree representing the CSG
object. The process proceeds by subdividing the cell, setting
each of its children’s CSG trees to a copy of its own CSG tree,
and then simplifying each child cell’s CSG tree to obtain the
simplest CSG tree that still represents the surface of the orig-
inal CSG object when restricted to each child cell.This is re-
peated for each of the children recursively until one of the
following conditions are met:

1. The cell’s CSG tree is empty (i.e., the surface of the CSG
object does not intersect with the cell).

2. The cell’s CSG tree is exclusively composed of unions of
primitives. (Rendering union of an arbritrary number of
primitives on the GPU can be done efficiently as in sec-
tion 3.3.3, hence we do not further subdivide and render

right away these cases)

3. The cell’s CSG tree has depth two (and is not an union
of two primitives, since that falls on case 2).

4. The cell projects onto less than a threshold of pixels in
the screen.

(b)

Figure 4: (b) Note the adaptiveness of the octree and how
it concentrates at the point of the (a) CSG object where
the surfaces of three different primitives intersect: The oc-
tree keeps being subdivided at that region until the cell
that still intersects the surfaces of three different primitives
project to less than a threshold of pixels, 1 in this case, on
the screen

Cells that fall in either of these cases will be called leaf cells
and all the others are called node cells.

Note that on each level of subdivision we do not start with
the original CSG tree, but with the CSG tree of the parent
cell, which is already a simplification of the original CSG tree
(that restricted to the parent cell, and hence to the child cell,
correctly represents the surface of the CSG object), thus the
improvement of doing binary subdivision.

2.2.1 CSG tree simplification scheme

As has been said before, the goal of our CSG tree simplifica-
tion scheme is to, given a cell and a CSG tree, simplify this
CSG tree as much as possible, ending with the simplest CSG
tree that, restricted to that cell, still represents the surface of
the original CSG object correctly. This is done in a standard
fashion, by pruning sub-trees of the CSG tree whose surface
do not intersect with the current cell in a recursive bottom-up
approach.

2.3 Traversal and rendering

Once the octree has been generated, it is traversed recursively
in a view-dependent front-to-back manner. When a leaf cell
corresponding to cases 1 or 4 in 2.2 is reached it is ignored,
and when a leaf cell corresponding to cases 2 or 3 is reached,
the part of the surface of the CSG object in the interior of that
cell, namely the restriction of the cell’s CSG tree to its interior,
is rendered in the GPU, as detailed in the next section.

(b)

Figure 5: (a) CS1000 and (b) its final octree: Each cell drawn
in (b) has in its interior a part of the surface of the CSG
object that can be represented by either a single primitive
(or its complement) or by a boolean operation of just two
primitives (complemented or not).

It is also possible to render the CSG object while subdivid-
ing it. By doing so, paralelization of the subdivision on the
CPU and the rendering on the GPU is achieved (see section
4). For vizualiation purposes however, once the subdivision
has been completed for a CSG object we can view it from
other angles and under different lighting conditions without
re-subdividing from scratch.

The next section lays out the fundamentals of ray-tracing sin-
gle, union, intersection and difference of primitives (or their
complements) restricted to a given cell in the GPU.

3 Ray-tracing CSG objects in the GPU

The newer generations of GPUs have allowed the design of
algorithms that transfer a substantial part of the workload
to the GPU. Several developments have been made toward
transfering ray-tracing of objects from the CPU to the GPU.
We extend on the work developed by Toledo and Levy [16],
to ray-trace not only a set of convex primitives, but also
boolean operations of them.

Note that we render only the parts of primitives or boolean
operations of primitives that are inside a given cell, as the
restriction of the CSG object to each cell is rendered one at
a time, and the local representation of the CSG object may
not correspond to the original object outside the given cell.
That being said, when ray tracing we must clip to the cor-
responding cell. Section 3.1 is an introductory presentation
to the important concepts of ray-tracing GPU primitives, and
for the sake of clarity does not incorporate this clipping. Sec-
tions 3.2 and 3.3 constitute the core of this section and detail
at length how we ray-trace single and boolean operations of
primitives, respectively.

3.1 Concepts of ray-tracing GPU primitives

The basic idea of ray-tracing primitives in the GPU, as intro-
duced by Toledo and Levy [16], is to bind the appropriate
vertex and pixel shaders first, and render some object (e.g.,
a bounding box) whose projection on the screen (the ray-
tracing area, or RTA) covers the projection of the intended
primitive (see figure 6). The shader then runs for every point
of the faces of the rendered object, and traces a ray from that
point, in the direction of the camera, determining if that ray
intersects the primitive or not (see section 3.1.2).

(a) (b) (c)

Figure 6: The front faces of the bounding boxes of the (a)
sphere (b) cylinder (c) cone are rendered. The pixel shader
then runs on each pixel of those front faces ray-tracing the
respective primitives

3.1.1 Bounding box as the ray-tracing area

Front faces of Axis Aligned Bounding Boxes (AABB), i.e., the
cells of the octree structure defined in the previous section,
are used as RTAs. This might not be the most efficient, de-
pending on the primitive and the camera position. For ex-
ample, a better suited RTA for a cone would be a pyramid in
which the cone is inscribed, as the pixel shader would run on
a smaller number of pixels than with a bounding box as the
RTA, and still be able to ray-trace the cone properly. [16] pro-
vides a more thorough analysis of RTAs and their efficiency.

3.1.2 Vertex and Pixel shader’s roles

After rendering the front faces of the bounding box of a prim-
itive with the appropriate vertex and pixel shaders bound,
the vertex shader will be executed for every vertex of this
bounding box, passing to the pixel shader vectors containing
light, pixel and camera positions, all in object space. The pixel
shader receives this information, as well as parameters con-
taining information on the primitives in question (depending
on primitive: center, radius, etc), calculates the ray direction,
traces the ray starting from the point at the bounding box cor-
responding to the pixel in question, and calculates the closest
(to the camera) intersection with the primitive, as well as the

primitive normal at that intersection. It then computes the
color and the correct depth of the pixel, as detailed in section
3.2.

3.2 Ray-tracing of simple convex primitives

The previous fundamentals will work for any class of prim-
itives. From here on, however, we will focus on the subset
of convex primitives, because with convex primitives we are
assured that any given ray-primitive intersection result will
either be empty or consist of a single segment (which can be
stored with only two scalar variables), thus allowing for an
efficient implementation of the ray-primitive and other nec-
essary algorithms on the pixel shader.

Given a cell L and a primitive P, in order to ray-trace P re-
stricted to L, we use the framework described in 3.1 with a
pixel shader that performs:

1. Let r = 0+t -v denote the ray starting at o (the object
space coordinates of the point for which the shader is
running), and going in the direction of the camera (v).

2. Intersect L with r - Obtain a segment !, §; = [0,#/] as a
result (i.e., the set of all t such that r and L intersect).

3. Intersect P with r - Obtain Sp, a segment (degenerate or
not) or an empty set. Calculate surface normals at the
ray-surface intersection points (if any).

4. Complement Sp and the respective ray-surface intersec-
tion normals if P is complemented.

5. Clip Sp to L (i.e., intersect Sp and Sr), obtaining Sg.

6. If Sg is empty, this pixel of the RTA does not correspond
to a pixel of the primitive, and is thus discarded.

7. Let t be the smallest value in Si.

8. If t =0 and (—¢,¢) is in Sg for some € > 0, discard the
pixel.2

9. Else, the ray intersects the surface of Pinside Lato+¢-v,
and we then:

o Calculate correct depth value for this pixel, which
originaly contains the depth of o, which lies in one
of the faces of the cell.(We must update this pixel’s
depth value to the depth of o +1 - v).

e Calculate color of the pixel, given t’s associated
color an surface normal.

Follows a description of each part of the algorithm.

Ray-cell intersection: A cell is nothing more than an AABB.
Intersecting rays with AABBs is relatively easy and is done
as described in [8].

Ray-primitive intersection: The ray-primitive intersection
set is calculated by replacing the ray equation (r(t) =0 +1-v)
into the equation for the surface of the primitive in question

IThe ray always intersect the cell, because the ray always starts at
a point on one of the front faces of the cell

2The object then extends outside the cell towards the camera,
since the cell is in the range [0,77]. This means the object must be
clipped at this point by the cell, so the pixel is discarded since it will
certainly be shaded when a cell closer to the camera, that contains
the surface that was clipped, is rendered

and solving for ¢, finding the intersection points, if any. The
normals at the intersection points are also calculated. Primi-
tives implemented were the cylinder, cone, and sphere. Other
implicit surfaces defined by low degree polynomials can be
easily included in our system.

Depth Calculation: Depth calculation is performed by trans-
forming o+t - v to eye-space coordinates, dividing by the ho-
mogeneous coordinate and rescaling from [-1,1] into [0,1].

Shading calculation: We implemented positional lighting,
with ambient, diffuse and specular components.

3.3 Ray-tracing boolean operations of simple
convex primitives

Section 3.3.1 describes how ray-tracing is implemented,
when the boolean operation is an intersection, in a way that
the resulting pixel shader is efficient. Other cases will either
derive from this (difference, at 3.3.2) or will be handled dif-
ferently (union, at 3.3.3).

3.3.1 Intersection of primitives

Given a cell (L) and two primitives (P, and P,), we want to ray
trace (P; N P) restricted to L. Again we perform the same pro-
cedure described in 3.1.2, with a pixel shader that performs
as follows:

1. Intersect L with r - Obtain a segment (S; = [0,#/]) as a
result.

2. Intersect P; with r - Obtain Sp;, either a segment (de-
generate or not) or an empty set as a result. While cal-
culating intersections, calculate surface normals at the
ray-surface intersection points (if any).

3. Intersect P, with r - Obtain Spy, as in the previous step.

4. Complement Sp; and the respective normals if P is
complemented and likewise for Sp;.

5. Intersect Sp; with Sp, - Obtain S (more on this in section
3.3.4). Associate with each boundary of S the appropri-
ate normals and colors (either from Sp; and Spp).

6. Clip S to L - Obtain Sg

7. Perform steps 6 to 9 in section 3.2.

3.3.2 Difference of primitives

The algorithm is exactly the same as the one in section 3.3.1,
but we modify step 4 to instead complement Sp; and the re-
spective normals if P is complemented and complement SP,
and the respective normals if P, is NOT complemented.

3.3.3 Union of primitives

The union operation is a special case, as it can be handled
by the z-buffer of the GPU. That is, given a cell (L) and a
collection of primitives (Py, ..., F), if we want to ray trace
(UP,) restricted to L, we need only render Py, ..., By restricted
to C, one at a time, as explained in section 3.2.

3.3.4 Intersection of ray-primitive result sets

This section describes how to intersect Sp; and Sp; in a way
that allows for an efficient shader implementation.

Depending on whether P; and P, are complemented, we have
4 possible combinations for Sp; and Sp;.

1. P not complemented, P, not complemented:

Sp1: 1 segment or empty-set
Spa: 1 segment or empty-set

2. P not complemented, P, complemented

Sp1: 1 segment or empty-set
Spy: 2 semi-intervals

3. P; complemented, P, not complemented (identical to
previous case with P; and P, interchanged)

4. P; complemented, P, complemented:

Spi: 2 semi-intervals
Spy: 2 semi-intervals

Since calculating the intersection of 2 segments is simpler
than calculating the intersection of 2 semi-intervals and 1 seg-
ment, which in turn is simpler than calculating the intersec-
tion of 2 pairs of semi-intervals, we break those 4 cases in
different algorithms so as to create the simplest possible pixel
shader for each case, (e.g., to render the intersection of a com-
plemented primitive and another primitive we would load a
shader that uses an algorithm for case 2).

Case 1: Segment(Sp;) N Segment(Sp;)
Let Sp; = [t1},11;] and Spp = [121,125].

We want to find S = Sp; N Spy = [¢1,£2] and associate with 71
and 12 the appropriate normals and colors (either from Sp; or
Sp2, depending on the case).

Upon closer inspection, it is only necessary to calculate ¢1,
because 1 alone determines whether the given ray intersects
a visible surface of the CSG object when restricted to that cell
(see figure 7). That is, we need only t1 to perform step 6 and 7
of the algorithm for ray-tracing the intersection or difference
of primitives. Step 6 is performed by checking whether 0 <
t1 <ty (again, see figure 7). If so, calculate the depth and
shading at o +¢1-v with the normal and color associated to
t1, otherwise the pixel is discarded.

Figure 8 provides a graphical description on how ¢1 is calcu-
lated.

Cases 2 and 3: Segment(Sp;) N 2 semi-intervals(Sp;)
Let Sp; = [l‘l] ,l‘lz] and Spy = [700,1‘2]] U [l‘22,°°].

We want to find S = Sp; N Spy. S might be an empty set, a seg-
ment or two segments. Figure 9 details the conditions neces-
sary for each of these cases.

Only the left boundaries (¢1 and ¢2) of each of the two pos-
sible segments S might be constituted of is necessary. After
calculating 71 and 12 we check if the smallest, which is always
t1, of them is in [0,7/] (See figure 10). If so, we proceed to cal-
culate the depth and shading with o +11-v as the intersection
point, and with the appropriate normal and color. Otherwise
we check whether 2 lies in [0,#/]. If so, we proceed to calcu-
late the depth and shading with o +2-v as the intersection

0 o Cf
02 Lo
Do not clip: 3
(2) (b)
0 0 f 0 0 f
e G 2eu e o
Clip: R S S L T

© @ @ M

Figure 7: This figure describes the 6 possible cases of how
S = [t1,12] relates to S; = [0,t7]. Obviously, cases (a) and (b)
should not be clipped (these are determined by 0 <11 <ty).
Cases (e) and (f) also trivially should not be rendered, since
[11,22]N[0,z7] = 0. And in cases (c) and (d) we have [—¢,¢]
contained in [¢1,12] N [0,77] for e=min(|t1],|r2|) - see section
3.3.1item 7

b
sl oo .
'@)

Figure 8: S is non-empty if (a) the left boundary of Sp; is
inside Spy = [r2],12;] or (b) the left boundary of Sp; is inside
Sp1 = [t11,712]. Hence there is an intersection if and only if
t1; <125 and 71, > 12;. In that case t1 is the greatest of 11,
(case (a)) and r2; (case (b)).

point and with the appropriate normal and color. Otherwise
the pixel is discarded.

SP1 — — —_— - —

sy A A e

S llH 15—- llH — —

tl
(a) (®) (© @ (e)

Figure 9: The four possible cases of combinations of Sp,
and Sp, are depicted above. As can be seen by (a), (b), (c)
and (d), t1 exists if either 71| <2, or ¢l is in [t21,72;], or
t1{ > t2,. In the first and third cases, t1 is set to 71; ((a), (b)
and (d)). In the second case t1 is set to 12| (case (c)). As can
be seen in (a), t2 exists if r1; <12, and 71, > 12,.

Case 4: 2 semi-intervals(Sp;) N 2 semi-intervals(Sp,)
Let Sp; = [700,1‘1]} @] [[12,°°] and Spy = [700,1‘2]] U [1‘22,001.

We want to find S = Sp; N Spy. S will have 2 semi-intervals,
and zero or one segment. Figure 11 exposes the cases where
a segment exists in S and the case where there is no segment
in §, and is the inspiration behind Algorithm 1.

Only the left boundaries of the left bounded semi-interval
and of the possible segment in S are necessary. After calculat-
ing 11 and 12 we set the output parameters (z, color,normal) to
the parameters associated with 71 and then check whether 2
lies in [0,7] (Note that we may have either 11 <2 or r1 > 2.
See figure 12). If that is the case, and either 2 <1 or ¢1 is not
in [0,1/], then we set the resulting parameters (¢, color,normal)
to the the parameters associated with 1. At this point, the
output parameters will contain either t = 1, in which case
the pixel may discarded in step 6 (depending on whether t1
is in [0,7] or not), or a value in [0,#/], in which case we pro-
ceed to calculating the depth and shading with o +¢-v as the

(b)

Figure 10: Case (a) shows a situation where t1 (with t1 in
[0,7]) defines the intersection point. Case (b) depicts a sit-
uation where t2 (t1 not in [0,7/] and t2 in [0,#/]) defines the
intersection point. Note that this figure does not go into all
possible cases of how S (in this case it has two segments)
relates to [0,7]. Its purpose is only to explain the general
idea of the algorithm

intersection point.

Note that with Algorithm 1 we may end up with a situation
as in figure 13 where a pixel is rendered incorrectly, however
since the object extends outside the cell towards the camera
along the ray, that pixel is bound to be rendered correctly
when the cells in front of the current cell (from the camera
point of view) are rendered.

Algorithm 1 calc_intersection3(SP;, SP)

t] «— oo
12 «— oo
if 12) <r1; then
12— 12y
end if
6: if 12 > t1, then
12 — 12y
else
tl —tly
end if
if 121 > 1, then
12: tl—tly
end if
t—tl
color — Py’s color
normal < t15’s normal
if (12 € [0,17]) and ((r2 < 1) or (r1 ¢ [0,tf]) then
18: t—12
color — P5’s color
normal «— t25’s normal
end if
return (t,color,normal)

4 Results

4.1 Performance analysis

A few different procedural models were used to analyze the
scalability of the algorithm with respect to primitive, depth,
area and octree complexities. These models have mainly dif-
ference operations because this is the costliest. We also ex-
perimented with some models we believe represent the most

tl_1 tl_2 ti_1 tl_2 ti_1 tl_2

SPL o " S1e2 ol)

spy — e -
St d o o)
(@) (b) (©)

Figure 11: Case (a) shows a situation where S has 1 segment
(this situation is defined by 72, <r1;). In this case, the left
boundary of the segment (t2) will be set to 12, and t1 will
be set to 71,.Case (b) also shows a situation where S has 1
segment (this situation is conditioned by r2; > ¢1;). In this
case the left boundary of the segment (t1) will be set to 1,
and t2 will be set to 12;. Case (c) shows a situation where S
has no segments (this case is conditioned by 2, > 71 and
121 < t1;). In this case t2 is set to 12, and t1 remains at .

0 t_f
e
(@)
0 f
2 tl 3
(b)
0 t_f
v

(©)

Figure 12: Case (a) shows a situation where t2 is in [0,/]
and t1 (t1=c) is not. Case (b) shows a situation where {2 is
not in [0,7/], so t will retain its initial value (r =71). Case (c)
depicts a situation where t2is in [0,77] and t1 (/1 = =) is not.

common use of CSG models (CAD) to analyze how our im-
plementation scales with the complexity of these models. All
timings correspond to rendering in a 640x480 window.

The tests were performed on two configurations: Cj, a
Pentium-M 1.4GHz with 512MB of RAM and a Geforce FX
G05200 GPU; C,, an Athlon 64 3800+ with 1GB of RAM and
a Geforce 6800 GT GPU. All tests used a threshold of 1 pixel.

For each model we measured S (time to perform the octree
subdivision), Ts (time to traverse the octree and pass the pa-
rameters to the GPU without the pixel shaders being active,
i.e., without rendering), 7Tx (time to traverse the octree and
render it), Sg (time to perform the octree subdivision and ren-
der while subdividing).

We can see from figure 14 that the algorithm scales in a linear
fashion with the number of primitives on both test setups.
The more complex models also show less improvement from

S Ts Tr Sz

Model - — & T G |G e e &

CS1000 1739 | 856 964 505 | 10776 | 2086 | 11243 | 2314

CC1000 | 3705 | 2658 | 1265 | 626 | 34975 | 4324 | 35233 | 4820

R9 29 20 19 11 1626 78 1677 80

11022 220 162 86 44 2464 319 2466 324

Table 1: Performance results for several models (all timings
in miliseconds)

o ©

Figure 13: Algorithm finds incorrect intersection point
(should find o but finds 0 +11-v)

6000

5000 —

4000 B

3000 e 4

Time (in ms)

2000 4
/

1000 [

— - .
N — : ‘ ‘ | |
100 200 300 400 500 600 700 800 900 1000

Number of primitives

Figure 14: (a) Graph showing times for CC100, CC200,
CC500 and CC1000 (each CCx denotes a cylinder subtracted
by x cones). Blue line clipped for visualization purposes -
its values at 500 and 1000 are 16046 and 34975, respectively

C to G, (in Tg). From gpubench analysis, C;’s GPU should
have around 20 times more instruction throughput than C’s
GPU. That kind of increase in performance is seen in the less
complex models, but for more complex ones that difference
can drop to as low as 5 times. This is explained by the fact
that these complex models have very large and complex oc-
trees whose subdivision takes significant time, and for each
cell of the octree a setup time (to pass primitive parameters,
camera and light parameters, etc to the pixel shader) incurs,
thus the process becomes more CPU and bandwidth bound,
as can be evidenced by comparing 75 and S as the number of
primitives increases in figure 14. This indicates that the fac-
tor by which the algorithm improves with better GPUs is in-
struction throughput bound for not so complex models, but
gets more bandwidth and CPU bound as models get more
complex. The results in table 1 also support these hypothe-
ses. Another bottleneck as models need more complex oc-
trees and thus have a large number of leaf cells is the num-
ber of draw calls made during the rendering. For example
rendering R9 requires only 2068 draw calls, while CS1000 re-
quires 85306 draw calls, and CC1000 requires 103250.

Also, given a CSG model, its rendering time when varying
the camera position will vary with the number of cells that
are actually on the visible screen (the smaller the number of
cells inside the visible screen the faster the rendering time, as
the not visible cells will be clipped and no pixel shader will
be executed for the pixels on those cells’ front faces), with the
area the object occupies on the screen (the larger the area the
object occupies on the screen the larger the number of pixels
that pixel shaders will be executed for, hence the slowest the
rendering times will be) and with its depth complexity (ev-
ery pixel on the screen will have pixel shaders executed for
it as many times as there are cells whose front faces contain
that specific pixel, hence the larger the depth complexity the
slowest the rendering time).

4.2 Correctness analysis

In order to verify the pixel accuracy of our approach, we com-
pared all our renderizations with renderizations produced by
povray, with quality settings comparable to our renderings
(+Q3), i.e., without inter-object shadows or anti-aliasing (fig-
ure 15 shows one such comparison). In all cases tested there
were no visible discrepancies.

(@ (b)

Figure 15: (a) CS1000 viewed up close, rendered using
proposed algorithm (b) CS1000 up close, rendered using
povray

5 Conclusions and Future Work

We have presented a new approach to rendering CSG objects
composed of convex primitives that has as its main advan-
tage the fact that it relies more on instruction throughput
power than on bandwidth (at least for reasonably complex
models) as opposed to other existing algorithms. This is a
remarkable fact since instruction throughput essentially dou-
bles with every new generation of GPUs whereas the band-
width improvement has been almost stagnated over the last
few generations. Our results are equiparable performance-
wise with the currently top performing algorithms, and as
newer generations of GPUs come out, from the results ob-
tained, we expect our algorithm to improve its performance
at a greater pace than previous algorithms.

Also, as newer GPUs are unveiled it may become feasible
to implement efficiently non-convex primitives as well as
boolean operations of more than two primitives, thus further
unloading the CPU, decreasing the octree size, and requir-
ing less parameter passing to the GPU, which would allow
for models with far greater complexity to be rendered at re-
alistic rates. Other structures such as kd-trees may be used
to perform better spatial subdivision, on which cells are di-
vided right on points such as in figure 2, thus decreasing the
complexity of the tree structures.

Another future improvement would be inter-object shadows.
This could be done with a two-pass approach to the problem,
rendering to a shadow-buffer first from the light source point
of view. Also, preliminary results indicate performing occlu-
sion queries may reduce drastically the dependence of the
rendering times on depth complexity and should be further
investigated.

References

[1] Bart Adams and Philip Dutre. Interactive boolean op-
erations on surfel-bounded solids. ACM Trans. Graph.,

[5]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

22(3):651-656, 2003.

Joao Luiz Dihl Comba and Ronaldo C Marinho Per-
siano. Ray tracing otimizado de solidos CSG usando
octrees. In Proceedings of the III SIBGRAPI, pages 21-30,
May 1990.

Gunter Erhart and Robert F. Tobler. General purpose
z-buffer CSG rendering with consumer level hardware.
Technical Report 2000-003, VRVis, 2000.

Jack Goldfeather, Jeff P M Hultquist, and Henry Fuchs.
Fast constructive-solid geometry display in the pixel-
powers graphics system. In Proceedings of SIGGRAPH
‘86, pages 107-116, 1986.

Jack Goldfeather, Steven Molnar, Greg Turk, and Henry
Fuchs. Near real-time CSG rendering using tree normal-
ization and geometric pruning. IEEE Comput Graphics
Appl, 9(3):20-28, May 1989.

Sudipto Guha, Shankar Krishnan, Kamesh Munagala,
and Suresh Venkatasubramanian. Application of the
two-sided depth test to CSG rendering. In Proceedings
of SI3D '03, pages 177-180, 2003.

John Hable and Jarek Rossignac. Blister: GPU-based
rendering of boolean combinations of free-form triangu-
lated shapes. ACM Trans. Graph., 24(3):1024-1031, 2005.

Eric Haines. Essential ray tracing algorithms, pages 33-77.
Academic Press Ltd., 1989.

Florian Kirsch and Jurgen Dollner. Rendering tech-
niques for hardware-accelerated image-based CSG. In
Journal of WSCG, volume 12, pages 221-228, February
2004.

Ari Rappoport and Steven Spitz. Interactive boolean op-
erations for conceptual design of 3-d solids. In Proceed-
ings of SIGGRAPH '97, pages 269-278, 1997.

Aristides G. Requicha. Representations for rigid solids:
Theory, methods, and systems. ACM Comput. Surv.,
12(4):437-464, 1980.

Jarek Rossignac. Blist: A boolean list formulation of
CSG trees. Technical Report 99-04, Georgia Institute of
Technology, January 08 1999.

Nigel Stewart, Geoff Leach, and Sabu John. An
improved z-buffer CSG rendering algorithm.
In HWWS '98: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics
hardware, pages 25-30, 1998.

Nigel Stewart, Geoff Leach, and Sabu John. A CSG ren-
dering algorithm for convex objects. WSCG 2000, 11:369—
372, Feb 2000.

Nigel Stewart, Geoff Leach, and Sabu John. Linear-time
CSG rendering of intersected convex objects. WSCG
2002, 11:437-444, Feb 2002.

Rodrigo Toledo and Bruno Levy. Extending the graphic
pipeline with new GPU-accelerated primitives. Techni-
cal report, INRIA, 2004.

T. F. Wiegand. Interactive rendering of CSG models.
Computer Graphics Forum, 15(4):249-261, 1996.

