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Figure 1. Velocity field approximation of a smoke simulation: samples of the original field, magnitude,
phase and integral curves of the approximated field.

Abstract

We present a novel algorithm for 2D vector field recon-

struction from sparse set of points–vectors pairs. Our ap-

proach subdivides the domain adaptively in order to make

local piecewise polynomial approximations for the field. It

uses partition of unity to blend those local approximations

together, generating a global approximation for the field.

The flexibility of this scheme allows handling data from very

different sources. In particular, this work presents impor-

tant applications of the proposed method to velocity and ac-

celeration fields’ analysis, in particular for fluid dynamics

visualization.

Keywords: Vector field reconstruction, partition of unity,

function approximation.

1 Introduction

The fundamental tools of classical physics are built on

vector fields: the motion of an object is represented by its

velocity vector field, and the fundamental law of mechanics

equals the acceleration vector field to the external force vec-

tor field. These fields appear generally in computer graphics

as measures of real phenomena, for example using Particle

Image Velocimetry methods, or as results of physical simu-

lations, such as fluid simulations through Smoothed Particle

Hydrodynamics.

Particle Image Velocimetry (PIV) became an important

and active research field in mechanical engineering. It is

concerned with the quantitative investigation of fluids by

imaging techniques [14]. PIV systems captures the light

scattered by small particles in a flow, and extracts from the

image sequence a set of points equipped with their esti-

mated velocity vectors. The reconstruction of the velocity

field from these maps has several applications, in particular

to modern aerodynamics and hydrodynamics research [16].

Smoothed particle hydrodynamics (SPH) has been

recognized as a flexible mesh free method for computa-

tional fluid dynamics simulations [9]. In SPH the fluid

is modeled as a collection of particles, which move under

the influence of hydrodynamic and external forces. Each

portion of fluid is represented by a particle with attributes,

among which the velocity and the acceleration vectors. In

the field of computer graphics, SPH has been applied for

deformable models [3], free surface flows [10] and blood

simulation [11], among others.

Motivation. On one hand, a PIV velocity map contains a

set of points with their velocity vectors. Each point corre-

sponds to a pixel on the image. The resolution of this map



is thus defined by the resolution of the camera used in the

acquisition process. On the other hand, the set of particles

at a given time t on a SPH simulation is completely un-

structured. For both problems, we aim at inferring a differ-

entiable vector field defined on the whole region of experi-

mentation. This field would not only improve visualization,

but also help in analyzing the field structure, for example,

by identifying the existence of vortices.

Contributions. This work proposes a novel algorithm for

2D vector field reconstruction considering as input unstruc-

tured sets of points–vector pairs (formalized at Section 3).

Our approach uses least squares techniques (detailed at

Section 4) on a multiresolution grid to generate local ap-

proximations. After that, we combine these approxima-

tions through partitions of unity, obtaining a global, smooth

description of the vector field (as detailed at Section 5).

This approach extends previous approximation techniques

to vector field. Comparing to purely visual techniques such

as texture interpolations, we are not restricted to regular grid

or to low order approximations. Moreover, we improve the

numerical stability of the approximation using ridge regres-

sion techniques. We conclude this work with important ap-

plications to visualization and analysis of the fluid velocity

field.

2 Previous and related works

In this work we combine three different techniques: least

squares fitting, ridge regression and partition of unity.

Least squares fitting is a mathematical procedure for

finding the best approximation function f to a given set of

points. To do so, it minimizes the sum of the squared residu-

als of the points to function f [8]. It has several applications

in the fields of computer graphics [13], geometric modeling

[19], image processing [6] and computer vision [7]. Sev-

eral works use least squares to reconstruct planar curves

[18] and surfaces [1] from sparse points. Here, we use this

mathematical framework to build local approximations for

the vector field, minimizing its residual on the given point–

vector pairs.

Ridge regression is a technique that is frequently used by

statisticians to remove the collinearity of the input points

[5]. This technique avoids computationally expensive itera-

tions of pseudo–inverse approaches and improves the least–

square solution even if the input points are not collinear.

Tasdizen et al. [17] applied such technique to improve the

least squares algebraic curve fitting from sparse points in the

plane. Along the same lines, we will use ridge regression

to regularize ill-conditioned linear systems produced by our

least squares problem.

Partition of unity [2, 4] is a very useful mathematical

tool to combine local approximations in order to construct a

global one. Important properties such as the global maximal

error and the convergence order could be inherited from the

local approximations. Ohtake et al. in [12] proposed a parti-

tion of unit based multiresolution method, called Multilevel

Partition of Unity (MPU), that reconstructs an implicit sur-

face approximation from a set of sparse sample points and

normals in R3. This work extends their ideas in order to

build a multiresolution scheme for vector field reconstruc-

tion. Although our work is for planar fields, it can be easily

extended to 3D.

3 Vector field and polynomial approximation

Sampled vector field. We will consider a set of points

P = {p1,p2, ...,pn}, where each point pi = (xi, yi) ∈
Ω ⊂ R

2 base a vector vi, and denote the set of vectors

{v1,v2, ...,vn} by V . We will suppose that each vector vi
is sampled from a differentiable vector field F : Ω ⊂ R2 →
R

2 at pi: vi = F(pi). A vector field is a map F : R2 → R
2

that assigns a vector F(p) = ( P (p) , Q (p) ) to each point

p ∈ R2. The functions P : R2 → R and Q : R2 → R are

called the coordinate functions of the vector field F . We

aim at inferring an approximation of F on region Ω.

Polynomial function. We will approximate each coordi-

nate function of F by a bivariate polynomial of a fixed de-

gree d, i.e. F(x, y) = ( Pd (x, y) , Qd (x, y) ) with:

Pd(x, y) =

d
∑

0≤j+k

aj,kx
jyk, Qd(x, y) =

d
∑

0≤j+k

bj,kx
jyk.

Notation. Since polynomial functions are the main math-

ematical object used in this paper, it is convenient to define

a suitable notation. We will use the matrix notation of Tas-

dizen et al. [18]:

Pd(x, y) = w t
(x,y)a, Qd(x, y) = w t

(x,y)b (1)

where column a ∈ Rl contains the coefficients [aj,k] of Pd
for j + k ≤ d:

a = [a0,0 a1,0 . . . ad,0 a0,1 . . . ad−1,1 a0,2 . . . ad−2,2 . . . a0,d]
t

and column w(x,y) ∈ R
l contains the monomials of degree

less than d:

w(x,y) =
[

1 x . . . xd y . . . (xd−1y) y2 . . . (xd−2y2) . . . yd
]t

The dimension l of columns a and w(x,y) is the number of

coefficients of Pd : #Pd =
(d+1)(d+2)

2 .
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4 Local vector field approximation

We aim at inferring a polynomial vector field F(x, y)=
( Pd, Qd ) that best approximates each sample vector vi
at pi. This section introduces the least square technique

we use for minimizing locally the approximation error be-

tween F(pi) and vi (Section 4.1). Our approximation also

incorporates eventual knowledge of the vector field deriv-

ative at the sample points (Section 4.2). We improve the

numerical stability of thelocal minimization using ridge re-

gression techniques (Section 4.3). All techniques are finally

combined and weighted using two user–defined parameters

(Section 4.4).

4.1 Classical least squares fitting

Inferring the approximating polynomial vector field

F(x, y) =
(

w t
(x,y)a, w t

(x,y)b
)

reduces to computing the

coefficient of a and b that minimize the approximation er-

ror. For least square methods, this error is formulated as

the sum, for each point pi, of the squared distance between

vectors F(pi) and vi, which can be written:

err(a,b) =

n
∑

i=0

‖F(pi)− vi‖
2

= atSa + btSb − 2atSx − 2btSy + Sx,y

(2)

where the following columns and matrices give a better de-

scription for the optimal solution:

S :=

n
∑

i=0

w(xi,yi) · w
t
(xi,yi)

∈ Rl×l

Sx :=

n
∑

i=0

(

vti · [
1
0 ]
)

w(xi,yi) ∈ Rl

Sy :=

n
∑

i=0

(

vti · [
0
1 ]
)

w(xi,yi) ∈ Rl

Sx,y :=

n
∑

i=0

‖vi‖
2 ∈ R.

With these definitions and using the normal equation, the

critical point (a,b) of the error function (2) is defined by:

Sa = Sx and Sb = Sy

Therefore, the coefficients of a and b that are the solution

of our least square problem are obtained by solving two l×l
systems of linear equations, which involves only the inver-

sion of matrix S: a = S−1Sx and b = S−1Sy .

4.2 Acceleration fitting

Some applications, like SPH simulations, also provide

the derivative v̇i of the vector field at each point pi ∈ P .

We will call this field the acceleration field, since in these

applications vi usually represents the velocity of particle

pi. This acceleration is usually given by the forces present

at pi. In this case we can use the set acceleration vectors

A = {v̇1, v̇2, . . . , v̇n} to complete the approximation of

the velocity field.

Notice that the time varying acceleration vector at point

p(t) = (x (t) , y (t)) should be approximated by the time

derivative
dF(p(t))

dt
of F. Although we do not have expres-

sions for x(t) and y(t), we do have the velocities at the

points pi ∈ P . The application of the chain rule thus de-

fines DF(pi)vi as an estimate for the acceleration vector at

pi, where DF(pi) is the Jacobian matrix of F at pi.

In order to improve the vector field approximation by

the use of the set A, we must add a new term to the least

square problem (2). This term corresponds to the sum of

the squared distance from the vectorDF(pi)vi to v̇i. Thus,

the new minimization problem that balances the weight of

the acceleration and the velocity approximation through a

user–defined parameter µ is:

mina,b

{

n
∑

i=0

‖F(pi)− vi‖
2 + µ

n
∑

i=0

‖DF(pi)vi − v̇i‖
2

}

We can use again the column representation for Pd and

Qd to write the second term as:

atZa + btZb − 2atZx − 2btZy + Zx,y

where the following columns and matrices give again a bet-

ter description for the optimal solution:

Di :=

[

∂wpi

∂x

∂wpi

∂y

]

∈ Rl×2

Z :=

n
∑

i=0

Diviv
t
iD

t
i ∈ Rl×l

Zx :=

n
∑

i=0

(

v̇ti · [
1
0 ]
)

Divi ∈ Rl

Zy :=

n
∑

i=0

(

v̇ti · [
0
1 ]
)

Divi ∈ Rl

Zx,y :=

n
∑

i=0

‖v̇i‖
2 ∈ R.

As a consequence, the above acceleration fitting problem

can be written:

min
a,b

{

at(S + µZ)a + bt(S + µZ)b

−2at(Sx+µZx)−2bt(Sy+µZy) + Sx,y+µZx,y

}

To solve it, we need to find the critical point of the new error

function. The optimal vectors a and b are thus obtained by
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(a) Velocity phase with RR (κ =

0.1).

(b) Acceleration phase with RR (κ =

0.1, µ = 1.0)

(c) Velocity phase without RR (κ =

0)

(d) Acceleration phase without RR

(κ = 0, µ = 1.0)

Figure 2. The ridge regression (RR) improves the stability of the approximation.

solving the following two l× l systems of linear equations:

(S+µZ)a = (Sx+µZx) and (S+µZ)b = (Sy+µZy)

4.3 Ridge regression

When the matrix R = (S+µZ) doesn’t have a maximal

rank or is ill conditioned then the technique called ridge

regression (RR) can be used to stabilize the linear system

solutions [5] (see Figure 2). In our application, the RR tech-

nique modifies the optimization problem by adding two new

terms depending on a diagonal matrix ∆ ∈ Rl×l and a con-

stant scalar κ weighting the regression term:

min
a,b

{

atRa + btRb − 2atRx − 2btRy +Rx,y

+ κ
(

at∆a + bt∆b
)

}

The solution of the ridge regression minimization prob-

lem is again obtained by solving the following system of

linear equations:

(R + κ∆)a = Rx and (R + κ∆)b = Ry (3)

Instead of adopting an identity matrix for ∆, we preferred

the one proposed by Tasdizen et al. [18]:

∆σσ =
i!j!

(i+ j)!





k+l=i+j
∑

k,l≥0

(k + l)!

k!l!

q
∑

m=1

x2k
m y

2l
m



 ,

where the indices i, j ≥ 0 are deduced from index σ by

σ = j + (i+j+1)(i+j)
2 , with i + j ≤ d. Such matrix has

several interesting geometrical properties [18].

4.4 Local approximation evaluation

Our local approximation scheme combines the least

square fitting, the acceleration fitting and the ridge regres-

sion method. These three techniques are unified into the

single square matrix inversion problem of equation (3). The

user can set parameters µ and κ to use only part of the tech-

niques. Observe that setting µ = 0 and κ = 0 we have the

classical least squares method. In particular, µ is set to zero

when the acceleration field A is not available. Using κ > 0
we add the ridge regression term of the minimization.

5 From local to global vector field evaluation

The previous section detailed how we compute a local

approximation F which fits to the field sample data P,V
and eventually A. Because of its local nature, this approx-

imation performs better on small sets of data. We thus

use this approximation only on small support regions (Sec-

tion 5.1). To evaluate the approximate vector field F at a

given point, we combine these local approximations using

a multiresolution partition of unity (MPU) scheme (Sec-

tion 5.2). This scheme guarantees a smooth behavior of

F, but requires that each region contains an approximation.

This requirement can be satisfied using the proper multires-

olution of the MPU scheme (Section 5.2). Figure 3 shows

an example of how the polynomial degree and the multires-

olution scheme influence on the field reconstruction.

5.1 Adaptive domain subdivision

In order to benefit from the efficiency of the least–square

method, we need to use it at the right level of detail. We de-

fine this level of detail through an adaptive quadtree decom-

position of the vector field domain Ω: a cell of the quadtree

is subdivided if it contains enough points for defining a

polynomial of degree d (which has #Pd coefficients) and

if it is not already of the maximal level (denoted by lmax)

defined by the user. Figure 4(left) illustrates the domain

subdivision determined by this quadtree structure, adapted

to the input data (blue points).
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(a) d = 2/lmax = 2. (b) d = 2/lmax = 5. (c) lmax = 5/d = 1. (d) lmax = 5/d = 3.

Figure 3. Multiresolution and polynomial degree effects on approximation.

Figure 4. Quadtree adaptated to the data and
the leaf’s supports.

5.2 Partition of unity

A partition of the unity function on Ω ⊂ R
2 is a set of

positive functions ϕi : R2 → R+ summing to 1 for each

point of Ω: ∀(x, y) ∈ Ω,
∑

i ϕi(x, y) ≡ 1 . These

functions provide an optimal way of combining the different

contributions of each local approximation: each of them can

be weighted with a different ϕi, and their weighted sum will

be a function F defined on the whole Ω. Moreover, since

this sum is actually a convolution, F has the same regularity

as the ϕi.

In practice, we use a multiresolution partition of unity,

such as the one proposed by Ohtake et al. [12]. Each cell

i of the quadtree defines a support region supp(ϕi) for the

ϕi, taken as a disk centered at the center ci of the cell with

radius ri =
3
4 of the diagonal of cell i. These support re-

gions are illustrated on Figure 4(right). Then, we compute

the local approximation Fi of the vector field F with the

methods described at Section 4, but using only the points

pi and vi belonging to supp(ϕi). A global approximation

for the vector field F : Ω → R
2 can then be deduced from

the partition of unity by:

F(x, y) ≈ F(x, y) ≡
∑

ϕi(x, y)Fi(x, y). (4)

5.3 Kernel functions

The last step is to define the partition of unity for each

cell i of the quadtree, respecting the support region and the

constant sum restrictions. Since the number of neighbors j

in the support varies from cell to cell, it is difficult to define

directly a partition of unity which respects the constant sum

restriction. The usual method defines ϕi from kernel func-

tions ki, based at the center ci of the quadtree cell i. These

kernels respect the support restriction, and the constant sum

restriction is ensured by the following definition:

ϕi(x, y) =
ki(x, y)

∑n

j=1 kj(x, y)
(5)

There are several examples of kernel functions with this

type of compact support and whose range is contained in

the interval [0, 1]. We mainly used the poly6 kernel [3]:

ki(x, y) = max

(

0 ,
4

πr8
i

(r2
i − ‖(x, y)− ci‖

2)3
)

5.4 Global approximation evaluation

We have now all the elements to compute a vector field

F : Ω → R
2 that approximates the vector field F from

where the data was sampled. To evaluate F at a point

p ∈ Ω, we traverse the quadtree, enumerating the nf leaf

cells whose support region contains p. After that, we com-

pute the P (p) and Q(p) coordinate function of F(p) using

equations (4) and (5).

However, in order to solve the two l× l linear systems of

the local approximation (equation (3)), each cell must con-

tain at least l = #Pp sampled points in its support region.

For example, using a polynomial approximation of degree

d = 2, we need l = 6 points inside each support region. We

propose the following strategy to work when this number is

not reached for the support of cell i: we generate random

points uniformly inside the support region of cell i. We at-

tach to these points the vector obtained by evaluating the

polynomial approximation Ff of the father f of i.
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(a) Original sampled data. (b) Magnitude map of the approxi-

mated field.

(c) Phase map of the approximated

field.

(d) Error graph of the synthetic ex-

ample.

Figure 5. Synthetic field example F = (y, x2), with some integral curves.

6 Application to derivatives evaluation

In this section, we present how to apply our approxi-

mated velocity field to the computation of integral curves

and to estimate Jacobian matrices and acceleration vectors.

Integral curves. Our method allows computing integral

curves on Ω using the global approximation for the velocity

field F : Ω → R
2. Given an initial condition p0 ∈ Ω, the

integral curve at p0 is the function cp0
: R → R

2, t 7→
cp0

(t) that satisfies:

cp0
(0) = p0;

dcp0

dt
(t) = F(cp0

(t)).

We can compute integral lines using an Euler method on the

global evaluation for F. The last picture of Figure 1 shows

examples of integral curves using several initial conditions.

Jacobian matrix evaluation. Using the expression of the

velocity field’s global approximation described in (4), we

can also compute an estimative for the Jacobian matrix of

F at a given point p. This requires computing the partial

derivatives of its coordinate functions. The expressions for

the coordinate functions are given by the following formula:

∂P

∂x
(p) =

nf
∑

i=1

ϕi(p)
∂Pd,i

∂x
(p) +

nf
∑

i=1

∂ϕi

∂x
(p)Pd,i(p)

∂P

∂y
(p) =

nf
∑

i=1

ϕi(p)
∂Pd,i

∂y
(p) +

nf
∑

i=1

∂ϕi

∂y
(p)Pd,i(p)

Acceleration field evaluation. We can apply the above

formulas to obtain an approximation of the acceleration

field: the acceleration vector at point p is given by

DF(p)v, where DF(p) is the Jacobian matrix of F at p,

and v = F(p) is the velocity vector. This approximation

serves not only for computational fluid application, but also

for visualizing properties of the resulted reconstruction.

7 Results

In this section we use the following convention for the

colors on the results figures background. For magnitude

maps, the colors vary from blue to red representing an scale

of the magnitude from low to high values. For phase maps,

the colors represent the cosine of the phase (which is the

angle between the vector and the abscissa axis). Again, we

use a color palette that varies from blue to red, representing

the variation of the cosine from −1 to 1.

We also use the following convention for the approxima-

tion error graphs. The abscissa represents the degree of the

polynomial, the ordinate represents global approximation

error. In each graph illustrating the errors, we draw eight

curves: one for each value of the maximal level lmax. We

choose to vary lmax from 0 to 7.

To measure the quality of the approximation, we use the

following error formula:

error =
1

n

n
∑

i=1

‖F(pi)− vi‖

/

1

n

n
∑

i=1

‖vi‖ (6)

This formula computes the quotient of the mean approxi-

mation distance error and the mean velocity norm using all

samples. We illustrate the power of our method by the use

of four examples.

Synthetic field. The first example illustrates the recon-

struction of a set of points sampled from the velocity field

F(x, y) = (y, x2) on the region [−2, 2] × [−2, 2]. Figure

5(a) shows the 441 sampled points with their correspond-

ing velocity vectors. Figures 5(b)(c) show the visualization

of some reconstructed velocity vectors and integral curves.

At the background we see on image (b) the velocity magni-

tude map and on (c) the cosine of the velocity phase map.

For that reconstruction, we use the following parameters:

d = 2, µ = 0, κ = 0.1 and lmax = 6.

Figure 5(d) shows the approximation error of the recon-

struction using the formula (6). Observing this graph, we
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(a) Original data. (b) Magnitude map of the velocity

approximation.

(c) Phase map of the velocity approx-

imation.

(d) Global error graph.

Figure 6. Particle image velocimetry example, with some integral curves.

conclude that we get better approximations either when we

increase the degree or when we increase the value of lmax.

Stable fluids. In figure 1 we provide an example of a ve-

locity field reconstruction obtained from 4096 samples of

an Eulerian grid-based fluid simulation [15]. From left to

right, the first image shows a discretized velocity field of

a smoke flow, the second illustrates the field reconstruction

obtained by the method and its magnitude map. The third

one shows the reconstructed field and its phase map at the

background. Finally, the last image displays some integral

curves using the reconstructed field. For that reconstruction,

we use the following parameters: d = 2, µ = 0, κ = 0.1
and lmax = 6. Figure 7 shows a graph of the approximation

error computed on the samples.

Figure 7. Stable fluid approximation error.

Particle image velocimetry. An important application of

our method is on the reconstruction of sampled points of

vector field acquired from a PIV device. Figure 6(a) shows

the input data with 15607 points. This sampled velocity

field corresponds to a flow of a gas that is continuously in-

jected horizontally on the bottom left corner. This gas flows

on the domain from left to right until it meets an wall, rep-

resented on the image by its right edge.

One can visualize some reconstructed velocity vectors

and integral curves in figures 6(b)(c). Again, at the back-

ground we see on image (b) the velocity magnitude map

and on image (c) the cosine of the velocity phase map. For

this example we use d = 2, µ = 0, κ = 0.1 and lmax = 6.

Figure 6 shows the approximation error. In this case the er-

ror is higher than the previous examples because the data is

very noisy in the top left and bottom right corners.

Smooth particle hydrodynamics. In the SPH applica-

tion, the acceleration vector is available at each sampled

point. In that case, we can use our acceleration fitting

method for local approximations. The initial condition for

the 2D SPH simulation is a rested fluid box, dropped at

the bottom center of a rectangular container. The data in-

put on this example corresponds to 1800 fluid particles at

a given time of the simulation, together with the following

attributes: position, velocity and acceleration.

Figure 8(a) shows the input points and the correspond-

ing velocities after of the impact against the vertical walls.

Figures 8(b),(c) show the reconstructed velocity vectors and

integral curves together with the velocity magnitude and co-

sine of the phase maps. Again this example is very noisy.

Finally, Figure 8(d) shows the approximation error graph.

This example shows that there exists an optimal level,

since even we continue to increase the maximum level we

can’t improve the approximation. The reason is that the sup-

port region of a high level node may not contain sufficient

number of point to make a good local approximation.

8 Conclusions and future works

This work proposed a novel multiresolution scheme for

velocity field reconstruction from sparse sampled points.

This new scheme combines three important techniques,

least squares fitting, ridge regression and partition of unity,

to produce a global approximation of the velocity field.

7



(a) Original sampled field. (b) Magnitude map of the velocity

approximation.

(c) Phase map of the velocity approx-

imation.

(d) Approximation error graph.

Figure 8. SPH simulation example, with some integral curves.

The method could be used on samples from very different

sources. The local approximation procedure is very flexi-

ble, since it unifies several methods and control their func-

tionality by the use of parameters (d,µ, and κ). The global

approximation is obtained by the use of a partition of unity.

Again the global approximation shows to be very malleable,

since the users not only have several options for the kernel

functions, but also can choose the maximum level of the

Quad-Tree and the local error control threshold to control

the reconstruction result.

The authors plan to extend this work in three main di-

rections. One is to generalize it to 3D velocity field recon-

struction. Another direction is to produce a velocity field

reconstruction scheme that is conservative. And the other is

to use other subdivision schemes, like binary space parti-

tions, to improve the approximation.
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