
Particle–based non–Newtonian fluid animation for melting objects

Afonso Paiva, Fabiano Petronetto, Thomas Lewiner and Geovan Tavares

PUC–Rio — Department of Mathematics — Matmı́dia Laboratory — Rio de Janeiro — Brazil

{apneto,fbipetro,tomlew,tavares}@mat.puc-rio.br

Figure 1. Melting the Stanford bunny starting cold at the bottom and hot at the top.

Abstract

This paper presents a new visually realistic animation tech-

nique for objects that melt and flow. It simulates viscoplas-

tic properties of materials such as metal, plastic, wax, poly-

mer and lava. The technique consists in modeling the object

by the transition of a non–Newtonian fluid with high vis-

cosity to a liquid of low viscosity. During the melting, the

viscosity is formulated using the General Newtonian fluids

model, whose properties depend on the local temperature.

The phase transition is then driven by the heat equation.

The fluid simulation framework uses a variation of the La-

grangian method called Smoothed Particle Hydrodynamics.

This paper also includes several schemes that improve the

efficiency and the numerical stability of the equations.

Keywords: Melting, Smoothed Particle Hydrodynamics,

Non-Newtonian Fluid, Heat Equation, Physically Based

Animation and Computational Fluid Dynamics.

1 Introduction

Physically based animations appeared in Computer

Graphics for visually realistic computer animations. The

main delicate point remains the discretisation the physical

law applying on a real-world object. This involves finding

an adequate formulation of the physics and stable approx-

imation schemes for their discretisation. In this paper, we

will focus on the heating of a solid viscoplastic object, such

as the example of Figure 1. Parts of the object remains solid

and parts becomes liquid, whose viscosity depends on its

temperature. The heat equation will thus drive the phase

transition.

Physical laws. Among non-Newtonian fluids, viscoplas-

tic fluids are characterized by the toothpaste effect: a signif-

icant force must be applied to them before it starts to flow.

The critical of the external force is known as the yield stress.

During melting, the yield stress, and thus the viscosity, de-

pends on the temperature. The recent advances of Mendes

et al. [15] formulate the viscosity with a general Newtonian

law which encompasses both viscous and liquid state. The

conciseness and generality of this formulation suits better

for melting, and we introduce it here for simulation.

Approximation scheme. Simulating the fluid behavior of

a viscoplastic object in its liquid phase requires a computa-

tional fluid dynamics (CFD) framework. In the computer

graphics literature, the most common CFD model relies on

Eulerian formulation where physical quantities are sampled

on a regular grid. This suits well for classical Newtonian

fluids like water. However, controlling grid based methods

require tracking the boundary of the fluid, which remains a

laborious task in free flow simulations.

In this work, we use a Lagrangian formulation on a

particle-based representation, called Smoothed Particle Hy-

drodynamics (SPH). The SPH method was introduced in

1977 by Gingold and Monaghan [7] and Lucy [13] simu-

late compressible fluids in astrophysics. Each particle rep-

resents a small volume of fluid subjected to natural forces

such as gravity, pressure and viscosity. SPH methods are

simple to implement and its accuracy compares nicely to

grid based methods in several instances.

Related works This work uses the SPH framework to

simulate melting solid objects as a non–Newtonian fluid.

We will quickly summarize the most relevant work to us on

these three topics.

Smoothed Particle Hydrodynamics. The SPH method

was introduced in the computer graphics community by

Desbrun and Cani in [6], where they used SPH to simulate

deformable bodies. Müller et al. [20] then used the SPH

approach for simulating incompressible fluids with surface

tension. Furthermore, they introduced point–splatting to

capture the fluid free surface. Recently SPH methods be-

came very popular in the special effects industry where it

was used to simulate lava flow in the third part of The Lord

of the Rings trilogy.

Non–Newtonian fluids. There are few works in computer

graphics for non-Newtonian fluids. Goktekin et al. [8] pro-

posed a grid–based method to compute the stress tensor of

these fluids. They use a linear Maxwell model with von

Mises plastic yield condition. Clavet et al. [3] use SPH

with a linear combination of elastic springs between parti-

cles driven plastic yield condition. Another method using

SPH was proposed by Mao and Yang [14], where the stress

tensor derives from a corotational Maxwell model.

Melting. The idea of simulating melting and flowing of

solids objects by coupling viscosity with temperature ap-

peared in different contexts. Carlson et al. [2] use an

Eulerian grid-based fluid method. They further need an im-

plicit integrator to compensate the instability of the grid–

based approach. Wei et al. [22] use cellular automata and

replace Navier–Stokes equations by simple rules in each

automata. Müller et al. [21] create a point–based frame-

work to simulate elastoplastic objects with von Mises plas-

tic yield condition. They use moving least squares (MLS)

for approximating the velocity gradient. Finally, Keiser et

al. in [10] introduces traditional SPH method in the previ-

ous framework with usual viscoplastic modeling.

Contributions. This paper introduces two new elements

to the melting simulation. First, we use General Newtonian

Fluid model [15] to compute the viscosity (see Section 2).

Its concise formulation reduces the number of parameters

for yield modeling and allows simpler relation with the

temperature. Moreover, since this formulation covers vis-

coplastic fluids within a single equation, it treats the whole

object at once and avoids delicate detection of the viscosity

transition.

Moreover, we introduce in the heat equation approxima-

tion a more stable Laplacian operator on the particles (see

Section 3). This approximation already improved Poisson

simulations [5] by involving differences of first derivatives

instead of second derivatives.

We also introduce several numerical improvements in

the method. First, we introduce the use of XSPH [16] for

avoiding the formation of stable clusters of particles (see

Section 3). Then, we reintroduce the artificial viscosity [6],

but for melting simulation. We also chose the continuity

equation for density (equation (6)) to avoids particle out-

liers. Finally, our implementation uses an adaptive time step

for each iteration based on the Courant-Friedrichs-Lewy

condition (see Section 4).

2 Formulation of the physical laws

Computational fluid dynamics (CFD) aims at pre-

diction fluid behavior through Navier–Stokes equations.

These equations are commonly solved using conventional

Eulerian formulation with grid-based methods such as fi-

nite differences and finite elements. In this work, we chose

an alternative method driven by the Lagrangian formula-

tion. As opposed to the Eulerian approach, the Lagrangian

formulation does not require advective term, which suits

well for meshless methods such as SPH. We will intro-

duce now this formulation and the General Newtonian Fluid

model [15] that models our viscoplastic object, together

with our heating model. The reader will find further details

on CFD in Anderson’s book [1].

Lagrangian formulation. Navier-Stokes equations can

be formulated by the following two equations describing the

conservation of the mass (equation (1)) and of the momen-

tum (equation (2)).

dρ

dt
= −ρ∇.v (1)

dv

dt
= −

1

ρ
∇p +

1

ρ
∇.S + g (2)

where t denotes the time, v the velocity vector, ρ the den-

sity, p the pressure, g the gravity acceleration vector and S

the viscoplastic stress tensor. This last term plays a funda-

mental role in melting simulation.

Generalized Newtonian Fluid model. For non-

Newtonian fluids, the stress tensor is a nonlinear function

of the deformation tensor D = ∇v + (∇v)
T

. For our

simulation, we will use the Generalized Newtonian Liquid

model proposed by Mendes et al. [15], where the stress

2

(a) Initial temperature. (b) 500 iterations. (c) 1060 iterations. (d) 3000 iterations.

Figure 2. Temperature of the 9727 particles of the bunny of Figure 1: the dark blue parts are below
the melting point, and thus remain solid. Observe that the left ear of the bunny gets colder after
touching the body.

tensor S is given by S = η (D)D, where the apparent

viscosity η depends on the intensity of deformation

D =
√

1
2 · trace (D)

2
. The viscosity function η is then

given by:

η (D) = (1 − exp [− (J + 1)D])

(

Dn−1 +
1

D

)

(3)

where n is the behavior of power–law index and J is the

jump number.

The jump number J is a new rheological parameter of a

viscoplastic fluid which combines previous ones such as the

yield stress and the consistency index. In our simulation, we

fixed n = 1
2 , and let only the jump number J vary with the

temperature.

Heating and melting. The melting of volumetric objects

corresponds to a phase transition from solid to fluid. We can

model this transition by varying the viscosity according to

the temperature of each particle. This model was used in

other animation frameworks, either using grid-based ap-

proach [2] or particle-based approach [10].

The time variation of the temperature is described by the

following heat equation, involving the temperature T and

the thermal diffusion constant k:

dT

dt
= k∇2T (4)

When the temperature of some part of the object in-

creases and reaches the melting point, it becomes liquid (see

Figure 2). The jump number J then decreases according to

the temperature. We will model the jump number as de-

creasing linearly with respect to the temperature:

J (T) = (1 − u)Jmax − uJmin

with u = (T − Tmin)/(Tmax − Tmin). Note that the vis-

cosity function of equation (3) thus decreases when temper-

ature increases and vice-versa.

3 Particle–based approximation scheme

We will use here the Smoothed Particle Hydrodynamics

(SPH) framework for simulating the fluid behavior. In our

animation framework, we use the formulation of SPH for

incompressible fluid [17]. A wide review of SPH methods

can be found in Monaghan’s survey [18].

The SPH principles are reviewed in Section 3.1. It re-

quires a discretisation of the different terms of the governing

equations: Section 3.2 describes the approximation of the

density for the continuity equation (1), Section 3.3 describes

the approximation of the pressure and the stress tensor of

the momentum equation (2). Sections 3.4 and 3.5 present

corrections for the viscosity and the velocity. Finally, Sec-

tion 3.6 introduces our approximation of the Laplacian in

the heat equation (4).

3.1 Smoothed Particle Hydrodynamics

The key idea of SPH is to replace the fluid by a set of

particles (see Figure 3). The dynamics of the fluid is then

naturally governed by the Lagrangian version of the Navier-

Stokes equations introduced in the last Section. The local

fluid properties such as mass and volume are attached to

each particle and interpolated in-between particles. This in-

terpolation uses a smoothing kernel W on the particles in

a radius of h. A scalar field A(x) and its associated gradi-

ent vector field ∇A(x) at point x are interpolated using the

particles j within a disk of radius h around x as follows:

A(x) =

n
∑

j=i

A(xj)
mj

ρj

W (x − xj , h) (5)

∇A(x) =

n
∑

j=i

A(xj)
mj

ρj

∇W (x − xj , h)

where n is the number of neighboring particles, j the parti-

cle index, xj the particle position, mj the particle mass and

ρj the particle density.

3

Figure 3. SPH schemes deal gracefully with complex topological of the chair surface.

Figure 4. Quintic smoothing kernel: the par­

ticles farther than the smoothing length h are
not considered in the convolution.

In this work, we choose a piecewise quintic smoothing

kernel function (see Figure 4),

W (x−xj , h) = 3
359πh3 · w

(

‖x−xj‖
h

)

, with:

w(q) =















(3−q)5−6(2−q)5 + 15(1−q)5 ; 0 ≤ q < 1
(3−q)5−6(2−q)5 ; 1 ≤ q < 2

(3−q)5 ; 2 ≤ q ≤ 3
0 ; q > 3

3.2 Particle approximation of continuity

Density is usually approximate in SPH systems using

the density summation, which follows directly from the

SPH approximation of equation (5):

ρi =

n
∑

j=i

mjW (xi − xj , h)

However, to ensure the physical meaning of the approxi-

mation, we need to introduce a symmetrization between the

pressure and the local velocity [12]. In particular, the den-

sity summation approach has a particle deficiency near the

fluid interface, which leads to spurious results. Moreover, it

requires more computational efforts since the density must

be evaluated before other parameters, such as pressure. We

therefore chose another approximation for the density, us-

ing the following SPH version of continuity equation (1):

dρi

dt
= ρi

n
∑

j=1

mj

ρj

(vi − vj) .∇iW (xij , h) . (6)

where vi and vj are velocities at particles i and j respec-

tively, and xij = xi − xj .

3.3 Particle approximation of the momentum

Pressure. The modeling of pressure remains a delicate

point for SPH simulations of incompressible fluids, due to

the lack of explicit control of the local density. Since SPH

suits better for compressible fluid, we approximate the in-

compressible fluid by a quasi-compressible fluid through an

equation of state [17] for the pressure. We use the one pro-

posed by Morris et al. [19]:

pi = c2 (ρi − ρ0) (7)

where pi is the pressure at particle i, c the speed of sound,

which represents the fastest velocity of a wave propagation

in that medium, and ρ0 is a reference density. This equation

of state is very similar with the ideal gas equation of state

used by Desbrun and Cani [6].

After updating the pressure at all particles using equa-

tion (7), we can evaluate the pressure term in equation (2)

at each particle i using a symmetrization similar to the den-

sity case [12]:

−
1

ρi

∇pi = −

n
∑

j=1

mj

(

pi

ρ2
i

+
pj

ρ2
j

)

∇iW (xij , h).

Stress tensor. In order to compute the stress tensor Si =
η (Di)Di at each particle i, where η (Di) is given by the

equation (3), we must pre-compute the deformation tensor:

Di = ∇vi + (∇vi)
T

4

(a) 20 iterations. (b) 550 iterations. (c) 780 iterations. (d) 1320 iterations.

Figure 5. Melting a completely liquid Gargoyle model using 6976 particles: the color codes the

velocity of each particle. The stability of the method preserves the shape of the object without
explicit mesh representation even after many iterations.

where the velocity is evaluated by the following equation:

∇vi =

n
∑

j=1

mj

ρj

(vj − vi) ⊗∇iW (xij , h) .

Finally, after updating of the stress tensor Si at each par-

ticle i, the stress term in equation (2) can be approximated

by:

1

ρi

∇.Si =

n
∑

j=1

mj

ρiρj

(Si + Sj) .∇iW (xij , h) .

3.4 Viscosity correction

To avoid numerical instabilities due to oscillations in the

velocity vector field, which may ruin the simulation, a com-

mon technique adds an artificial viscous stress term in the

SPH approximation of the linear momentum (equation (2))

as follows:

dvi

dt
←

dvi

dt
−

n
∑

j=1

mj

ρi

∏

ij∇iW (xij , h) . (8)

The effect of the artificial viscous stress is given by the

term:

∏

ij =











−αµijc+βµ2

ij

0.5(ρi+ρj)
, (vi − vj) .(xi − xj) < 0

0, (vi − vj) .(xi − xj) ≥ 0

and

µij =
h (vi − vj) .(xi − xj)

|xi − xj |
2

+ 0.01h2

where α corresponds to bulk viscosity and β corresponds to

von Neumann-Ritchmyer viscosity [18].

3.5 XSPH Velocity correction

To prevent particle inter–penetration, which may result

in stable clusters of particles, Monaghan [16] introduced an

improvement called XSPH velocity-correction. In XSPH

(X means unknown), each particle i moves in the following

way:

vi ← vi + ε

n
∑

j=1

mj

0.5 (ρi + ρj)
(vj − vi) W (xij , h) (9)

where ε ∈ [0, 1].
The XSPH technique consists in computing an average

velocity from the velocities of the neighboring particles, it

helps to keep particles of an incompressible flow to move

more orderly.

3.6 Laplacian approximation

The Heat equation (4), which governs the phase transi-

tion from solid to fluid, requires an approximation for the

Laplacian of the temperature ∇2Ti. This second derivative

can be approximated using the normal SPH convolution by

the use of second derivatives for each particle i [10]:

∇2Ti =

n
∑

j=1

mj

ρj

(Ti − Tj)∇
2
i W (xij , h) .

However, the above equation has some disadvantages

such as sensibility to particle disorder: the heat transfer be-

tween particles may be positive or negative since the second

derivatives can change sign. The heat equation using this

approximation may not conserve the thermal energy in the

adiabatic enclosure [4].

For these reasons, we use a Laplacian operator involving

only first derivatives, which was first proposed by Cummins

and Rudman [5] to solve the Poisson equation with the SPH

version of the Projection Method. Its expression follows:

∇2TI =

n
∑

j=1

mj

ρj

(

4ρi

ρi + ρj

)

(Ti − Tj)
xij .∇iW (xij , h)

|xij |
2

+ 0.01h2
.

5

Algorithm 1 Particle dynamics

1: repeat

2: for each particle i do

3: Update derivative density (equation 6)

4: Update acceleration (equation 2)

5: Correct acceleration (equation 8)

6: Update derivative temperature (equation 4)

7: end for

8: for each particle i do

9: Update xi, vi, Ti and ρi with Leap-Frog scheme

10: Correct vi with XSPH (equation 9)

11: Update pi (equation 7)

12: Update viscosity (equation 3)

13: end for

14: Update particle neighbors

15: Update △t using CFL condition (equation 10)

16: time = time + △t
17: until time < timetotal

Attribute Description

x position

v velocity

a acceleration

D deformation tensor

ρ density

η viscosity

T temperature

Table 1. Particle attributes.

4 Results and Implementation

In implementing a particle system we have two descrip-

tions a global one and local one. The local description takes

care of a single particle entity and of the attribute stored at

each particle. In our model there are system attributes and

particle attributes. The particle system attributes like mass,

speed of sound and the smoothing length h are global and

they do not change with respect to time. The particle at-

tributes vary with respect to time thus they must be stored

at each particle, these attributes are given by table 1. These

attributes are updated in the sequence of algorithm 1.

4.1 Numerical integration

The SPH fluid equations are integrated with the second

order accurate Leap-Frog scheme [12]. The advantages of

Leap-Frog algorithm are computational efficiency for one

fluid equation evaluation per step and the low memory stor-

age required in the evaluation. The stability in this explicit

time integration scheme is due to the Courant-Friedrichs-

Lewy (CFL) condition, where adaptive time step is given

by

△t = 0.1min

{

h

|vmax| + c2
,

h2

6 ηmax

}

. (10)

This adaptive time step allows reducing the number of iter-

ation while maintaining accuracy (see Figure 6).

4.2 Neighbors retrieval

In contrast with grid-base methods, where the positions

of neighboring grid-cells are well defined, the neighbors of

a given particle in the SPH method can vary with time. An

adaptive hierarchy tree search [9] is adopted to find the par-

ticle neighbors.

The tree search method splits recursively the problem

domain into octants that contain particles, until the leaves

on the tree has a maximum particle number (we use at most

ten particles for each leaf). After the tree structure is built,

the search process can be performed.

For a given particle i, a cube with side 6h centered at

xi is used to enclose the particle. We check at each level

of the tree if the cube intersects the tree nodes containing

the particles. If they do not intersect we stop the descent

down on that particular path. If they do intersect we go to

the next level and repeat the process until we reach the tree

leaves containing particles. Now we check if each particle

is inside of the support domain of the current particle i. If

it is we record it as a particle neighbor. The complexity of

this tree search method is of order O(n log(n)), n being the

total particle number.

4.3 Rendering

The tracking of the fluid free surface is done by rendering

an isosurface from the SPH approximation of its character-

istic function:

χ (x) =

n
∑

j=1

mj

ρj

W (x − xj , h)

where the isovalue is in the range [0, 1].

We use an efficient and robust implementation of the

marching cubes algorithm [11] to generate the triangle mesh

for the isosurface. To improve the evaluation at the grid

nodes we use the same hierarchical data structure for search

neighboring particles.

The animations of Figures 1 and 6 were rendered using

the open–source ray tracer POV–Ray.

6

(a) Initial object. (b) 390 iterations.

(c) 800 iterations. (d) 2000 iterations.

Figure 6. Melting of the SIBGRAPI logo using 12900 particles, starting cold at the bottom and hot at
the top. The adaptive time step allows an accurate simulation with few iterations.

4.4 Results

We tested the method described in this paper on simple

models. The example of Figures 1 and 2 simulates the melt-

ing of the Stanford bunny with 9727 particles. The simula-

tion is initialized with a linear gradient of temperature such

that the ears melt while the body remains cold and solid.

The visual result of Figure 1 matches the intuition of the

process. Moreover, the physical behavior is coherent, espe-

cially since one of the ears gets colder when touching the

body, while the other one remains hot (see Figure 2).

In this work, we combined many advanced discretisation

schemes to guarantee the stability of the simulation. The

SPHmethod already offers simple handling of topological

singularities, as for the 10000 particles simulation of Fig-

ure 3. This efforts result impressively when simulating the

only flowing part of the melting, as on Figure 5. In that

case, all the 6976 particles start above the melting point,

and flows as a non–Newtonian fluid. The good handling

of viscosity in SPH techniques allows very realistic results.

For example, the head of the gargoyle remains well defined

even when almost completely melted.

Finally, the proposed adaptive time step allows efficient

simulations. For example, the melting of the Sibgrapi logo

of Figure 6 used 12900 particles, i.e. more particles than for

the bunny. However, it required less execution time for the

simulation (see Table 2). This is due to the lower density of

the model, which allowed bigger time steps.

5 Conclusions and future works

This paper proposed a physical simulation for melting

viscoplastic objects. Our simulation relies on the SPH

framework, and implements the General Newtonian Fluid

7

model for viscoplastic fluids. It is further enhanced in nu-

merical stability by adapted discretisation of the Navier–

Stokes equation terms, and by a stable Laplacian operator

for the heat equation. The effectiveness of the method is

illustrated on simple examples which match the physical

laws, leading to an efficient scheme for both animation and

simulation purposes.

This work can be improved mainly in two directions.

On one side, the inner nature of SPH systems permits

a straightforward parallelization of the algorithm, which

would increase the possible number of particles used dur-

ing the simulation. On the other side, the rendering remains

a fundamental part for animation purposes. The isosurfac-

ing approach may be complemented by advanced rendering

techniques during the simulation, in order to produce the

final animation directly.

Animation Number of Time per

particles iteration

Bunny 9727 0.94s

Chair 10000 0.75s

Gargoyle 6976 1.06s

Sibgrapi 12900 0.92s

Table 2. Average timings of the example ani­
mations running on Pentium 4 – 2.4 GHz. Note
that in the Gargoyle simulation, all particles
were fluids.

Acknowledgments

We would like to thank Prof. Paulo Roberto Mendes

(Department of Mechanical Engineering, PUC–Rio) for

suggesting us to use his viscoplastic fluid model. The

authors are members of Matmidia laboratory at PUC–Rio

which is sponsored by CNPq, FAPERJ and Petrobras.

References

[1] J. D. Anderson. Computational Fluid Dynamics. McGraw-

Hill, 1995.

[2] M. Carlson, P. Mucha, B. Van Horn III, and G. Turk. Melt-

ing and flowing. In Proceedings of ACM SIGGRAPH Sym-

posium on Computer Animation, pages 167–174, 2002.

[3] S. Clavet, P. Beaudoin, and P. Poulin. Particle-based

viscoelastic simulation. Proceedings of ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation,

pages 219–228, 2005.

[4] P. W. Cleary and J. J. Monaghan. Conduction modelling

using smoothed particle hydrodynamics. Journal of Com-

putational Physics, 148:227–264, 1999.

[5] S. J. Cummins and M. Rudman. An sph projection method.

Journal of Computational Physics, 152:584–607, 1999.

[6] M. Desbrun and M. P. Cani. Smoothed particles: A new par-

adigm for animating highly deformable bodies. In Computer

Animation and Simulation ’96, pages 61–76. Procedings

of EG Workshop on Animation and Simulation, Springer-

Verlag, August 1996.

[7] R. A. Gingold and J. J. Monaghan. Smoothed particle

hydrodynamics: theory and application to non-spherical

stars. Monthly Notices of the Royal Astronomical Society,

181:375–389, 1977.

[8] T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien. A method

for animating viscoelastic. ACM Transactions on Graphics,

23(3):463–468, 2004.

[9] L. Hernquist and N. Katz. Treesph: A unification of sph

with hierarchical tree method. The Astrophysical Journal of

Supplement Series, 70:419–446, 1989.

[10] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and

M. Gross. A unified lagrangian approach to solid-fluid ani-

mation. In Proceedings of the Eurographics Symposium on

Point-Based Graphics, pages 125–134, 2005.

[11] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Ef-

ficient implementation of marching cubes with topological

guarantees. Journal of Graphics Tools, 8(2):234–241, 2003.

[12] S. Li and W. K. Liu. Meshfree Particle Methods. Springer,

2004.

[13] L. B. Lucy. Numerical approach to testing the fission hy-

photesis. Astronomical Journal, 82:1013–1024, 1977.

[14] H. Mao and Y. Yang. A particle-based model for non-

newtonian fluid. Technical Report TR05-05, University of

Alberta, 2005.

[15] P. R. S. Mendes, E. S. S. Dutra, J. R. R. Siffert, and M. F.

Naccache. Gas displacement of viscoplastic liquids in cap-

pilary tubes. Journal of Non-Newtonian Fluid Mechanics,

2005. (to appear).

[16] J. J. Monaghan. On the problem of penetration in particle

methods. Journal of Computational Physics, 82:1–15, 1989.

[17] J. J. Monaghan. Simulating free surface flow with sph. Jour-

nal of Computational Physics, 110:399–406, 1994.

[18] J. J. Monaghan. Smoothed particle hydrodynamics. Reports

on Progress in Physics, 68:1703–1759, 2005.

[19] J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low reynolds

number for incompressible flows using sph. Journal of Com-

putational Physics, 136:214–226, 1997.

[20] M. Müller, D. Charypar, and M. Gross. Particle-based fluid

simulation for interactive applications. In Proceedings of

ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 154–159, 2003.

[21] M. Muller, R. Keisser, A. Nealen, M. Pauly, M. Gross, and

M. Alexa. Point based animation of elastic, plastic and melt-

ing. Proceedings of ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, pages 141–151, 2004.

[22] X. Wei, W. Li, and A. Kaufman. Melting and flowing of

viscous volumes. Computer Animation and Social Agents

(CASA), pages 54–59, 2003.

8

