
Performance Evaluation of a Hybrid Algorithm for Collision Detection
in Crowded Interactive Environments

Rafael de Sousa Rocha¹ Maria Andréia Formico Rodrigues² Leandro da Silva Taddeo²
¹Informática, Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil

²Mestrado em Informática Aplicada, Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil
rafaelrocha@edu.unifor.br, mafr@unifor.br, taddeo@unifor.br

Abstract

Crowded interactive environments composed of a
large number of objects need a fast, accurate and
scalable mechanism for collision detection. This work
presents a detailed performance analysis of a hybrid
collision detection algorithm for highly interactive and
crowded environments. Extensive tests were conducted
and the performance of the algorithm was evaluated in
terms of output quality and running time, by applying
a usability criteria. The results show that interactive
frame rates for environments composed of 1000
colliding objects can be successfully achieved with a
good level of user satisfaction using the Sweep &
Prune algorithm together with sphere-trees generated
by the Combined algorithm.

1. Introduction

In the last years, new computer technologies have
been developed to achieve more realism and enhance
the level of interactivity supported by virtual
environments [1]. An important issue related to both
realism and level of interactivity of virtual
environments is the approach used for collision
handling [2].

Basically, the collision handling can be divided in
two steps: collision detection and response. The
collision detection aims at reporting collisions and
delivering specific information to the collision
response, so that the latter can compute the responses
accordingly.

Collision detection algorithms can be classified into
the following categories: continuous and discrete [3].
Continuous algorithms utilize time-parameterized
equations to compute the first time of contact between
colliding objects, as well as their contact state. By
contrast, discrete algorithms sample the object’s

trajectory and report interpenetrations. Despite the
former being more accurate, the latter fits better in
interactive environments with high scalability, such as
those composed of a large number of objects.

To speed up the collision detection, a traditional
approach is to separate the problem into two distinct
phases: broad and narrow. The broad phase collision
detection aims at efficiently cull out pairs of non-
intersecting objects, discarding as many pairs of
objects as possible. The collision detection process is
refined in the narrow phase, when the remaining pairs
of objects are analysed more accurately. The objects’
geometry or an approximation of it may be used in the
narrow phase. Pairs of objects are then validated,
issued as colliding objects, and passed to the response
module.

This work presents a performance evaluation of
collision detection strategies in highly interactive and
crowded environments, in which the user interacts with
3D moving objects via a joystick with force feedback.
As the main motivation of our work, we address the
question of whether there exists an effective trade-off
between speed, accuracy, and scalability of some
existing collision detection schemes that can be
combined to achieve the best possible performance for
the scenarios we implemented. In particular, for the
broad phase collision detection, we analysed,
measured, and compared four algorithms: Brute Force,
Grid [4], Octree [5] and Sweep & Prune [6]. For the
narrow phase, we implemented an algorithm based on
sphere-trees [7], and compared two algorithms for
building this hierarchical structure: Spherical Octree
[2] and Combined [8]. The main contribution of our
work is the demonstration that a hybrid algorithm that
uses Sweep & Prune (for the broad phase) and sphere-
trees generated by the Combined algorithm (for the
narrow phase) is fast, accurate, and scalable. We show
that this approach is recommendable for applications
with a large number of colliding objects

(approximately 1000, no matter their geometric
complexity) and that it also achieves good levels of
effectiveness (frame rate) and user satisfaction.
Specifically, we were able to achieve at least a rate of
20 frames per second (fps) for a number of colliding
objects spanning from 100 to 700, and 10fps for
objects spanning from 600 to 1000.

The remaining of the paper is organized as follows.
In Section 2, we provide an overview of related work.
Section 3 presents four traditional broad phase
collision detection methods, as well as their main
advantages and limitations. In Section 4, two
algorithms for building sphere-trees for the narrow
phase are evaluated. Section 5 presents the scenarios
we designed and implemented. Various experiments
and the obtained results are discussed in Section 6. The
algorithms are then evaluated in terms of output
quality of the running time, using a subjective analysis
and usability criteria in Section 7. Finally, conclusions
and future work are summarized in Section 8.

2. Related work

Before actually starting the narrow phase, bounding
volumes (BVs) can be applied to quickly reject pairs of
objects that do not collide. BVs are usually simple
geometric objects, such as axis aligned bounding boxes
(AABB) [6] and spheres [9]. Although they are very
useful, testing all the BVs is O(n²), where n is the
number of objects. Decreasing this complexity is the
broad phase’s role.

An important aspect of the broad phase is the
concept of spatial coherence (objects that are located
far away from each other do not need to be tested for
collision). Spatial data structures can be used to
decompose the virtual environment into cells (usually
voxels) to take advantage of spatial coherence. Regular
grids, octrees and BSP-trees [10] are some examples of
spatial data structures used with this purpose. There
are also approaches other than spatial partitioning data
structures. The Sweep & Prune algorithm, for example,
is based on temporal coherence. This approach can
compute intersecting AABB pairs in nearly O(n+m),
where n is the total number of objects and m is the
number of colliding objects. Hubbard uses space-time
bounds to implement the broad phase [7]. This
approach avoids the collision-tunneling problem
(objects passing through each other between frames),
which occurs in discrete algorithms.

In the narrow phase, the remaining pairs from the
broad phase are further processed. For most interactive
systems it is not possible to test the actual geometry of
the objects. Instead, conservative approximations can

be used. One such approximation is bounding volume
hierarchies (BVHs). AABB [11], oriented bounding
boxes (OBB) [12], spheres and k-DOPs [13] have been
successfully used to build approximations of an
object’s geometry. In particular, Hubbard describes a
collision detection algorithm for interactive
applications based on sphere-trees [7] and shows three
algorithms for automatically building this structure.
Recently, Bradshaw has proposed a very efficient
method for building sphere-trees that combines a set of
sphere reduction algorithms [8].

Currently, image-based techniques which can be
executed on graphics processing units (GPUs) have
also received attention [14]. However, reading buffers
from GPU memory is usually a very slow operation,
making buffer readbacks unappealing [1].

Although many approaches have been proposed for
collision detection, few papers have been published on
crowded environments, taking the level of interactivity
achieved during the simulations into account. By
contrast, in our experiments, we implemented a highly
interactive environment composed of a large number
of colliding 3D objects, where the user can navigate
and interact with them using a force feedback joystick.

3. Broad phase collision detection

In the following sections, we initially investigate a
Brute Force algorithm for the broad phase, only for
purpose of comparison with other well-known broad
phase methods. This algorithm is used to test all the
objects’ bounding volumes for intersection and is
O(n²). Then, to improve on this initial algorithm, in
Section 3.1 we implemented two spatial partitioning
data structures: grids and octrees. Finally, in Section
3.2, we implemented the Sweep & Prune algorithm, an
approach that does not partition the space.

3.1. Grid and Octree algorithms

A simple way to enhance the initial approach is to

partition the virtual environment space into cells and,
for each cell, execute the Brute Force method. We
have implemented an algorithm that uses regular 3D
grids to partition the space into voxels [4]. Each voxel
contains a list of objects within its region and has a
Brute Force method to compute a set of pairs of
objects whose BVs intersect. The main advantage of
using grids is that these data structures can be used
statically. It means that the grid granularity does not
have to be always updated, and the objects can be
updated in the grid very quickly. In fact, the
granularity may never change and can be computed in

a pre-processing time. However, grids have still
serious limitations: the difficulty of estimating the best
grid granularity for different scenarios, the likelihood
of objects to belong to more than one cell (requiring
extra use of memory), and the fact that grids do not
adapt themselves to objects’ distribution in a scene.

To build the grid, we first create an AABB that
surrounds all the space considered for collision. Then,
we fill this AABB with smaller, non-overlapping
AABBs, depending on the grid granularity, so that they
cover all the space. Each of these AABBs corresponds
to the voxels of the grid. Therefore, finding out the
objects’ location inside the grid is straightforward, by
intersecting their bounding volume with the
correspondent voxel. The center of the objects’
bounding volumes may indicate an initial voxel to be
tested. After that, a flooding algorithm is used to find
out the remaining cells. Once all the objects are
organized into the voxels, we loop through the voxels
(not all of them, instead, when we update the objects in
the grid, we keep track of those cells that had updates
and pass them to the collision detection method) and
test the objects in the voxels’ list for intersection. For
this, we invoke the Brute Force method for each voxel.

The grid may be extended in a hierarchical way to
build octrees. With this in mind, we extended our grid
implementation to support an octree structure,
partitioning the cells in a new grid when required (with
granularity 2x2x2). Differently from the grids, octrees
have the property of self-adapting to the objects’
distribution. However, the cost for this is very high
because the structure needs to be updated constantly.
In our implementation, the octree is updated at each
frame, what causes a significant overhead. Another
problem is that the octree requires large amount of
memory due to the number of cells and because objects
may be located in more than one cell.

The process of building the octree structure is as
follows. Firstly, an AABB that surrounds the space
considered for collision is created and becomes the
root of the tree. After this, all the objects inside the
root node are inserted in the node’s object list, and the
node is partitioned in a 2x2x2 grid. Each voxel of the
grid becomes a new octree node, and this process is
repeated using the objects of its parent’s list, until a
target depth (the distance from the root) is reached.
After building the octree structure, we start processing
the root node by traversing the tree down the leaves.
Whenever a leaf node is reached, the Brute Force
method is invoked to compute the object pairs among
the objects, within the leaf. Otherwise, the algorithm
recurs on the current node’s children.

3.2. Sweep & Prune algorithm

An AABB can be represented by its three intervals

(one for each axis) and, in particular, two AABBs
intersect if and only if all their three intervals intersect
[6]. The Sweep & Prune algorithm keeps all the
AABBs’ intervals in three separated sorted lists (one
for each axis) and takes advantage of frame coherence.
It means that the lists from the previous frame are
nearly sorted in the current frame, because the objects
do not move too far between frames. An insertion sort
algorithm is then used to keep the lists sorted in nearly
linear time [11]. Analysing the adjacent intervals in the
lists can consequently derive all the colliding object
pairs for the broad phase. In particular, the algorithm
we implemented is described in [1] and does not need
to tune any parameters, such as the grid granularity or
the octree depth, for example. In some circumstances,
however, we observed that there is a likelihood of
generating some specific objects’ distributions in the
scene, such as line arrangements of objects. As a
result, this behaviour may cause many intersection
tests, where most of the intervals in one of the lists do
intersect. In spite of this, the Sweep & Prune algorithm
updates its structure (specifically the three lists) in a
fast manner and requires less intersection tests than the
methods discussed previously.

4. Narrow phase collision detection

In this Section, we implement a robust algorithm
based on BVHs for the narrow phase [1]. We choose
sphere-trees as BVHs because spheres are rotationally
invariant, the intersection test between them is
computationally very cheap, and there are many
efficient algorithms for building sphere-trees. The
simplest algorithm to build sphere-trees relies on
octrees and is described in Section 4.1. Section 4.2
presents the Combined algorithm, a more sophisticated
approach that integrates a set of sphere reduction
algorithms to compute a very accurate approximation.
We assume that the root of the sphere tree (level 0)
corresponds to the object’s bounding sphere.

4.1. Spherical Octree algorithm

A modified version of the octree structure
developed for the broad phase can also be utilized in
the narrow phase. We adapted our octree structure to
partition polygons of an object instead of objects of a
scene, that is, we need to test the polygons against
AABBs, which represent the octree’s cells. The octree
can then be used as a hierarchical approximation of the

object, where the object’s AABB is the root. Once the
octree is built, a straightforward way for building a
sphere-tree is to circumscribe each node of the octree,
namely spherical octrees. In (b) and (c) of Figure 1, are
shown the object bunny’s spherical octree with 4 and 5
levels, respectively. Although this subdivision process
is fast, octrees need many levels of subdivision to
converge to the object’s geometry. Consequently,
spherical octrees may be deep, when compared to the
approaches from Section 4.2, and does not generate an
acceptable approximation. As a result, this approach
degrades the performance of our narrow phase
algorithm.

4.2. Combined algorithm

Motivated by the fact that spherical octrees do not
fit objects tightly (because they do not take into
account the object’s geometry), Hubbard proposed an
algorithm based on the medial axis (a skeleton-like
shape structure based on the object’s geometry), and
uses this structure to build sphere-trees [7].

Many algorithms to build tight sphere-trees have
been published, including variations of Hubbard’s
algorithm. For example, a simple way to enhance the
Spherical Octree algorithm is to use hierarchical grids
instead of octrees, allowing more freedom in the
subdivision, and, additionally, optimizing the
orientation of the grid and the size of the spheres. The
algorithms Merge, Burst and Expand are all variations
of Hubbard’s algorithm. All these algorithms improve
on Hubbard’s algorithm by reducing the number of
spheres, each in a different way, so that they generate
tighter sphere-trees. Another relevant algorithm is the
Spawn algorithm, which attempts to reduce the number
of spheres in the sphere-tree, although it does not use
the object’s medial axis. Bradshaw implemented an
approach that allows the use of different sphere
reduction algorithms in conjunction [8]. In this way,
for each set of spheres, the algorithm searches for the
approach which results in the lowest error, converging
to a very tight approximation of the object (Figure 2).

5. Scenarios of the application

The environment of the application is represented
by a room with dimensions 100x25x100, which is
populated with a large number of moving objects
(from 100 to 4000), whose dimensions are
approximately 1x1x1. The scenario is composed of
two types of objects: boxes (composed of 12 triangles)
and bunnies (composed of 1500 triangles). In Figure 3
is exhibited one of our scenarios with the avatar
located in the center of the scene, circumscribed by a
circle.

Each object in the environment has linear velocity
and is not allowed to rotate. Thus, the AABBs do not
need to be recalculated. When objects collide, one or
more components of their velocities are negated as a
response to the collision. The user of the application
can control an avatar through a joystick with force
feedback. A virtual joystick was also implemented so
that the user can realize the latency of the movements
applied to the real joystick. Additionally, the real
joystick offers to the user a great immersion,
particularly when there is a collision between the
avatar and another object in the scene.

 (a) (b) (c)
Figure 1. The object’s geometry and the
object’s spherical octree with 4 and 5 levels
are shown in (a), (b), and (c), respectively.

 (a) (b) (c)
Figure 2. Sphere-tree generated using the
Combined algorithm with 2, 3, and 4 levels are
shown in (a), (b) and (c), respectively.

Figure 3. One of the scenarios implemented to
run the experiments.

6. Experiments and results

The scenarios we designed to carry out the
experiments were implemented with the graphics
package Java3D [15]. The experiments were
conducted by varying the number of objects and the
algorithms for collision detection. These experiments
were made on a 3.06 GHz PC with 768 MB of
memory. Two different types of movements were
implemented (in the plane XZ and in the space XYZ),
but similar results were obtained. Therefore, only the
results for the movements in the space XYZ are
presented. The algorithms’ performance was evaluated
based on the average frame rate generated in each
experiment. For calculating this value, we considered
only the total time needed to process the collision
detection. Actually, this value includes the time to
update the structures involved in the detection, the time
to process the broad phase algorithm, and the time to
process the narrow phase.

Initially, we carried out extensive experiments
exclusively using broad phase algorithms. The
collision response was implemented applying a
heuristic algorithm that considers the AABBs’
intervals and determines which components should be
negated. We evaluated four algorithms: Brute Force,
Grid, Octree and Sweep & Prune. It is important to
note that the algorithms that use grids and octrees need
specific parameters: grid granularity and octree depth,
respectively. For the scenarios implemented, the best
parameters found in our experiments were a
granularity of 10x4x10 and a depth of 3 for the grid
and octree, respectively. We use these parameters to
compare the broad phase algorithms.

The performance curve of the Brute Force, Octree,
and Grid algorithms, with the number of objects
varying from 100 to 500, is shown in Figure 4, where
we can notice the superior performance achieved by
partitioning data structures (grid and octree) when
compared to the Brute Force algorithm. Furthermore,
in this experiment, the Grid algorithm has superior
performance over the Octree algorithm. For example,
for 500 objects, the Grid algorithm has a performance
of 12fps, while the Octree algorithm achieves a rate of
approximately 34fps. This happens because the octree
is dynamically built at each frame, while the grid is
built in a pre-processing time and is not updated during
the execution of the application.

Although the superior performance of the Grid
algorithm over the Octree one, the former still presents
serious performance limitations when compared to the
Sweep & Prune algorithm (Figure 5). The latter
reaches a high frame rate without drastically degrading

its performance while the number of objects increases.
For 1000 objects, for example, while the Grid
algorithm has a performance of approximately 14fps,
the Sweep & Prune algorithm achieves a rate of
approximately 54fps. This demonstrates that this
approach is not only fast, but also scalable and,
therefore, the most suitable to detect collision in the
broad phase of our interactive environment.

To analyze the differences between the Grid and the
Sweep & Prune algorithms, we compared the time
spent on updating the data structures and on processing
the broad phase during 500 frames of the animation
(Figure 6). In particular, there is a huge disparity
between both algorithms in the time spent on
processing the broad phase. The Sweep & Prune
algorithm computes the colliding pairs in much less
time. The data structure updating time is relatively
greater in the Sweep & Prune algorithm than in the
Grid one (the former varies from approximately 78%
to 98%, whereas the latter varies from 53% to 62%).
This fact motivated us to explore a hybrid approach

Figure 4. Performance curves of broad phase
collision detection algorithms (Brute Force,
Octree, and Grid).

Broad Phase Frame Rate (1)

0

50

100

150

200

250

100 150 200 250 300 350 400 450 500

Number of objects

Fr
am

e
R

at
e

w
ith

ou
t R

en
de

rin
g

Brute Force Octree depth 3 Grid 10x4x10

Figure 5. Performance curves of broad phase
collision detection algorithms (Octree, Grid,
and Sweep & Prune).

Broad Phase Frame Rate (2)

0

25

50

75

100

125

150

500 550 600 650 700 750 800 850 900 950 1000

Number of Objects

Fr
am

e
R

at
e

w
ith

ou
t R

en
de

rin
g

Octree depth 3 Grid 10x4x10 Sweep and Prune

where the Sweep & Prune and the Grid algorithms are
combined (each voxel of the grid has a Sweep & Prune
method to compute the colliding pairs). However, the
results found were inferior to the ones obtained using
only the Sweep & Prune algorithm.

New experiments were conducted, now processing
the narrow phase too. In this stage, we used
approximations of the objects and carried out a
refinement process in levels of details for the collision
detection, by using sphere-trees. To automatically
build the sphere-trees, two specific algorithms were
used: Spherical Octrees and Combined. When there is
a collision between two sphere-trees, the pairs of
spheres (one from each sphere-tree) that do intersect
are used to assist in the collision response (they help to
choose which components of the velocity will be
negated). The experiments in the narrow phase used
Sweep & Prune, the algorithm that achieved the best
performance in the previous tests for the broad phase.

The octree implemented in the broad phase was
then extended to build sphere-trees. However, sphere-
trees built in this manner are inaccurate, because they
need many levels to converge to the object’s geometry.
For this reason, we built octrees with 4 and 5 levels to
generate satisfactory approximations of the object
bunny. On the other hand, due to the simplicity of the
object box´s geometry, for generating its geometric
approximation we built an octree with 2 levels only.
As an alternative to this approach, we also used the
Combined algorithm, presented at Section 4.2. This
algorithm generates very accurate approximations of
the object bunny. In addition, it provides a way to
build sphere-trees with 2 and 3 levels, with
approximations even better than the ones built with the
Spherical Octree algorithm with 4 and 5 levels.

The results we have obtained with the
implementation of these four approaches (Spherical
Octree algorithm with 4 and 5 levels; Combined
algorithm with 2 and 3 levels) are shown in Figure 7.
The performance of the narrow phase algorithm
supported by sphere-trees is directly affected by the
structure’s depth. Therefore, the Combined algorithm
is more suitable for our scenarios because it builds
more accurate sphere-trees, with low depth.

Figure 8 shows the time spent by the collision
detection process (data structure updating, as well as
broad and narrow phases) during 500 frames of the
animation. For this experiment, we used the Sweep &
Prune algorithm and sphere-trees with 2 levels, built
by the Combined algorithm. Note that the time needed
to update the lists of the Sweep & Prune algorithm
clearly dominates the time spent during collision
detection. Also, the time needed for the broad phase
was greater than the one spent on the narrow phase.

Figure 6. Time spent on updating the data
structures and processing broad phase
algorithms during 500 frames of the
animation.

Sweep & Prune X Grid

0

5

10

15

20

500 600 700 800 900 1000

Number of Objects

Se
co

nd
s

Sweep & Prune Updating Sweep & Prune Broad Phase
Grid Updating Grid Broad Phase

Figure 7. Performance curves of the hybrid
algorithm with different approaches for
building sphere-trees.

Collision Detection Frame Rate

0

20

40

60

80

100

120

500 550 600 650 700 750 800 850 900 950 1000

Number of Objects

Fr
am

e
R

at
e

w
ith

ou
t R

en
de

rin
g

Octree 5 Octree 4 Combined 3 Combined 2

Figure 8. Time spent on updating the data
structures and processing the collision
detection, during 500 frames of the animation.

Collision Detection Timings

0

2

4

6

8

500 600 700 800 900 1000

Number of Objects

Se
co

nd
s

Updating Broad Phase Narrow Phase

To evaluate then the scalability of our approach
(besides speed and accuracy), we combined the Sweep
& Prune algorithm (broad phase) with sphere-trees
(narrow phase) in a scenario extremely crowded, with
up to 4000 moving objects. Our experiments
demonstrate that with a slightly more than 2000
objects, it is possible to obtain a performance of
approximately 9fps (without rendering). For 4000
objects, however, the performance was unacceptable
(approximately 2fps).

Finally, we evaluated the performance of the Sweep
& Prune algorithm combined with sphere-trees,
including the rendering process. Figure 9 shows the
frame rate obtained considering the total time needed
to render the scenes. Note that even when the
environment is populated by 1000 moving objects, it is
still possible to obtain a rate greater than 10fps, using
sphere-trees with 2 and 3 levels. More specifically,
sphere-trees with 2 levels resulted in a better frame rate
(approximately 14fps) when compared to sphere-trees
with 3 levels (approximately 12fps).

7. Usability Analysis

Usability is an important aspect to analyse the level
of interactivity of virtual environments and is used in
this work to evaluate the performance of the hybrid
algorithm, based on the experiments from Section 6.

According to ISO 9241-11, the dimensions of
usability are: effectiveness, efficiency, and satisfaction.
Effectiveness measures usability from the point of
view of the output of the interaction. Efficiency relates
effectiveness of interaction to resources expended.
Satisfaction refers to the comfort and acceptability of
using the system. We validated the quality of the
output of the interaction (perceptions) based on level
of usability of the system implemented using the
effectiveness (frame rate) and satisfaction (subjective
user analysis) criteria [16]. Minimal frame rates that

range from 6Hz to 20Hz are suggested as acceptable
frame rates for interactive virtual environments [11],
whereas values spanning from 60Hz to 75Hz are
presented in the literature as theoretical targets still to
be reached [17].

Table 1 shows the overall level of effectiveness and
satisfaction obtained with the implemented hybrid
algorithm. The results indicate a high level of user
satisfaction for scenarios with up to 350 objects and a
very good satisfaction for simulations with the number
of objects ranging from 350 to 500 (26 ≤ frame rate ≤
40). User satisfaction was also good for scenarios with
the number of objects ranging from 500 to 1000 (10 ≤
frame rate ≤ 25).

Table 1 – The overall level of effectiveness and satisfaction
obtained with the hybrid algorithm

Effectiveness /
Frame Rate (fps)

Level of Satisfaction /
Performance

< 10 low
≥ 10 and ≤ 25 good
≥ 26 and ≤ 40 very good

> 40 high

8. Conclusions and future work

We implemented and evaluated the performance of
four algorithms for the broad phase (Brute Force, Grid,
Octree, and Sweep & Prune). The Sweep & Prune
algorithm achieves the best performance, and among
the algorithms we tested is the most scalable for broad
phase collision detection in interactive environments.

In the narrow phase, we used an algorithm
supported by sphere-trees. Two algorithms for building
these structures (Spherical Octree and Combined) were
compared. We showed that the Combined algorithm
builds much tighter sphere-trees, and therefore is more
suitable for narrow phase collision detection in
interactive environments. We also evaluated a hybrid
algorithm that uses the Sweep & Prune algorithm and
sphere-trees. This approach is fast (it carries out only
simple intersecting tests), scalable (the Sweep & Prune
algorithm discards non-intersecting objects very
efficiently) and accurate (the Combined algorithm
generates very precise sphere-trees). The hybrid
algorithm was successfully used in crowded interactive
environments. We were able to achieve very good
frame rates (between 26 and 40) for scenarios with up
to 500 objects and good frame rates (between 10 and
25) for scenarios with 1000 objects.

Finally, according to our analyses and experiments,
the proposed hybrid algorithm achieves a much higher
performance than other combined methods for the
broad and narrow phases. For example, the Grid and

Figure 9. Performance curves of the hybrid
algorithm, including rendering.

Simulation Frame Rate

0
5

10

15
20

25
30

35

500 550 600 650 700 750 800 850 900 950 1000

Number of Objects

Fr
am

e
R

at
e

w
ith

 R
en

de
rin

g

Combined 3 Combined 2

Spherical Octree algorithms obtain low values for
accuracy, scalability and speed; the Grid and
Combined algorithms obtain good levels of accuracy,
but low scalability and speed; and the Sweep & Prune
and Spherical Octree algorithms obtain intermediate
values for speed and scalability, but with low accuracy.
Besides, the investigation of pure methods shows that
for the broad phase the Sweep & Prune algorithm is
about 75% faster than the Grid one; for the narrow
phase when using the Spherical Octree algorithm with
4 levels (instead of 5 levels) we speed up the algorithm
by about 56%, and when using sphere-trees with 3
levels, built by the Combined algorithm (instead of
Spherical Octrees with 4 levels), we gain
approximately 45% in speed. Additionally, sphere-
trees built by the Combined algorithm are much more
accurate.

As future work, we aim at improving the Sweep &
Prune algorithm motivated by our experiments using
the hybrid algorithm. These experiments demonstrate
that the time needed to update the interval lists of the
Sweep & Prune algorithm dominates the total time
spent during the collision detection. Additionally, we
plan to optimize the Grid and Octree algorithms for the
broad phase, as well as to implement other spatial
partitioning data structures such as BSP-trees. As an
improvement on the narrow phase, an interruptible
algorithm may be also used to provide more control
upon the time spent for collision detection in
interactive environments.

Acknowledgements

Rafael de Sousa Rocha benefits of a PIBIC studentship
and is grateful to the Brazilian supporting Agency
CNPq.

References

[1] C. Ericson, Real-Time Collision Detection, Morgan and

Kaufmann Publishers, 2005.
[2] C. O’ Sullivan and J. Dingliana, “Real-Time Collision

Detection and Response using Sphere-Trees”, In
Proceedings of the 15th Spring Conference on
Computer Graphics, 1999, pp. 83-92.

[3] S. Redon, “Continuous Collision Detection for Rigid
and Articulated Bodies”, ACM SIGGRAPH Notes,
2004.

[4] R.S. Rocha and M.A.F. Rodrigues, “Detecção de
Colisão Broad Phase Utilizando Grids para Ambientes

Interativos”. Revista Eletrônica de Iniciação Científica
(REIC), SBC, June, Vol. 6(2), 2006, pp. 1-17.

[5] S. Bandi and D. Thalmann, “An Adaptive Spatial
Subdivision of the Object Space for Fast Collision
Detection of Animating Rigid Bodies”, Computer
Graphics Forum, Vol. 14(3), 1995, pp. 259-270.

[6] J.D. Cohen, M.C. Lin, D. Manocha, and M.K.
Ponamgi, “I-Collide: An Interactive and Exact
Collision Detection System for Large-Scale
Environments”, In Proceedings of the ACM Interactive
3D Graphics Conference, 1995, pp. 189-196.

[7] P.M. Hubbard, “Collision Detection for Interactive
Graphics Applications”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 1(3), 1995,
pp. 218-230.

[8] G. Bradshaw and C. O’Sullivan, “Sphere-Tree
Construction using Medial-Axis Approximation”, In
Proceedings of the ACM SIGGRAPH Symposium on
Computer Animation, 2002, pp. 33-40.

[9] K. Storey, F. Lu, G. Morgan, “Determining Collisions
Between Moving Spheres for Distributed Virtual
Environments”, In Proceedings of the 22nd Computer
Graphics International, 2004, pp. 140-147.

[10] R.G. Luque, J.L.D. Comba, and C.M.D.S. Freitas,
“Broad-Phase Collision Detection Using Semi-
Adjusting BSP-Trees”, In Proceedings of the
Symposium on Interactive 3D Graphics and Games,
ACM Press, 2005, pp. 179-186.

[11] G.V.D. Bergen, Collision Detection in Interactive 3D
Environments, Morgan and Kaufmann Publishers,
2004.

[12] S. Gottschalk, M.C. Lin, and D. Manocha, “OBB-Tree:
A Hierarchical Structure for Rapid Interference
Detection”, Computer Graphics Forum, Vol. 30, 1996,
pp. 171-180.

[13] J.T. Klosowski, M. Held, J.S.B. Mitchell, and H.
Sowizral, “Efficient Collision Detection Using
Bounding Volume Hierarchies of k-DOPs”, IEEE
Transactions on Visualization and Computer Graphics,
Vol. 4(1), 1996, pp. 21-36.

[14] N. Govindaraju, S. Redon, M.C. Lin, and D. Manocha,
“CULLIDE: Interactive Collision Detection between
Complex Models in Large Environments using
Graphics Hardware”. In Proceedings of the ACM
SIGGRAPH/Eurographics Conference on Graphics
Hardware, 2003, pp. 25-32.

[15] G. Rowe, Computer Graphics with Java, Palgrave,
2001.

[16] L.S. Taddeo, “Detecção de Colisão utilizando Grids e
Octrees Esféricas para Ambientes Gráficos Interativos”,
MSc. Thesis, UNIFOR, Fortaleza, Brazil, 2005.

[17] B. Watson, N. Walker, W. Ribarsky, and V. Spaulding,
“Effects on Variation in System Responsiveness on
User Performance in Virtual Environments”, Human
Factors (Special Section on Virtual Environments),
Vol. 40(3), 1998, pp. 403-414.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

