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Abstract 
 

Crowded interactive environments composed of a 
large number of objects need a fast, accurate and 
scalable mechanism for collision detection. This work 
presents a detailed performance analysis of a hybrid 
collision detection algorithm for highly interactive and 
crowded environments. Extensive tests were conducted 
and the performance of the algorithm was evaluated in 
terms of output quality and running time, by applying 
a usability criteria. The results show that interactive 
frame rates for environments composed of 1000 
colliding objects can be successfully achieved with a 
good level of user satisfaction using the Sweep & 
Prune algorithm together with sphere-trees generated 
by the Combined algorithm. 

 
 
1. Introduction 
 

In the last years, new computer technologies have 
been developed to achieve more realism and enhance 
the level of interactivity supported by virtual 
environments [1]. An important issue related to both 
realism and level of interactivity of virtual 
environments is the approach used for collision 
handling [2].  

Basically, the collision handling can be divided in 
two steps: collision detection and response. The 
collision detection aims at reporting collisions and 
delivering specific information to the collision 
response, so that the latter can compute the responses 
accordingly.  

Collision detection algorithms can be classified into 
the following categories: continuous and discrete [3]. 
Continuous algorithms utilize time-parameterized 
equations to compute the first time of contact between 
colliding objects, as well as their contact state. By 
contrast, discrete algorithms sample the object’s 

trajectory and report interpenetrations. Despite the 
former being more accurate, the latter fits better in 
interactive environments with high scalability, such as 
those composed of a large number of objects.  

To speed up the collision detection, a traditional 
approach is to separate the problem into two distinct 
phases: broad and narrow. The broad phase collision 
detection aims at efficiently cull out pairs of non-
intersecting objects, discarding as many pairs of 
objects as possible. The collision detection process is 
refined in the narrow phase, when the remaining pairs 
of objects are analysed more accurately. The objects’ 
geometry or an approximation of it may be used in the 
narrow phase. Pairs of objects are then validated, 
issued as colliding objects, and passed to the response 
module. 

This work presents a performance evaluation of 
collision detection strategies in highly interactive and 
crowded environments, in which the user interacts with 
3D moving objects via a joystick with force feedback. 
As the main motivation of our work, we address the 
question of whether there exists an effective trade-off 
between speed, accuracy, and scalability of some 
existing collision detection schemes that can be 
combined to achieve the best possible performance for 
the scenarios we implemented. In particular, for the 
broad phase collision detection, we analysed, 
measured, and compared four algorithms: Brute Force, 
Grid [4], Octree [5] and Sweep & Prune [6]. For the 
narrow phase, we implemented an algorithm based on 
sphere-trees [7], and compared two algorithms for 
building this hierarchical structure: Spherical Octree 
[2] and Combined [8]. The main contribution of our 
work is the demonstration that a hybrid algorithm that 
uses Sweep & Prune (for the broad phase) and sphere-
trees generated by the Combined algorithm (for the 
narrow phase) is fast, accurate, and scalable. We show 
that this approach is recommendable for applications 
with a large number of colliding objects 



(approximately 1000, no matter their geometric 
complexity) and that it also achieves good levels of 
effectiveness (frame rate) and user satisfaction. 
Specifically, we were able to achieve at least a rate of 
20 frames per second (fps) for a number of colliding 
objects spanning from 100 to 700, and 10fps for 
objects spanning from 600 to 1000. 

The remaining of the paper is organized as follows. 
In Section 2, we provide an overview of related work. 
Section 3 presents four traditional broad phase 
collision detection methods, as well as their main 
advantages and limitations. In Section 4, two 
algorithms for building sphere-trees for the narrow 
phase are evaluated. Section 5 presents the scenarios 
we designed and implemented. Various experiments 
and the obtained results are discussed in Section 6. The 
algorithms are then evaluated in terms of output 
quality of the running time, using a subjective analysis 
and usability criteria in Section 7. Finally, conclusions 
and future work are summarized in Section 8. 
 
2. Related work 
 

Before actually starting the narrow phase, bounding 
volumes (BVs) can be applied to quickly reject pairs of 
objects that do not collide. BVs are usually simple 
geometric objects, such as axis aligned bounding boxes 
(AABB) [6] and spheres [9]. Although they are very 
useful, testing all the BVs is O(n²), where n is the 
number of objects. Decreasing this complexity is the 
broad phase’s role. 

An important aspect of the broad phase is the 
concept of spatial coherence (objects that are located 
far away from each other do not need to be tested for 
collision). Spatial data structures can be used to 
decompose the virtual environment into cells (usually 
voxels) to take advantage of spatial coherence. Regular 
grids, octrees and BSP-trees [10] are some examples of 
spatial data structures used with this purpose. There 
are also approaches other than spatial partitioning data 
structures. The Sweep & Prune algorithm, for example, 
is based on temporal coherence. This approach can 
compute intersecting AABB pairs in nearly O(n+m), 
where n is the total number of objects and m is the 
number of colliding objects. Hubbard uses space-time 
bounds to implement the broad phase [7]. This 
approach avoids the collision-tunneling problem 
(objects passing through each other between frames), 
which occurs in discrete algorithms. 

In the narrow phase, the remaining pairs from the 
broad phase are further processed. For most interactive 
systems it is not possible to test the actual geometry of 
the objects. Instead, conservative approximations can 

be used. One such approximation is bounding volume 
hierarchies (BVHs). AABB [11], oriented bounding 
boxes (OBB) [12], spheres and k-DOPs [13] have been 
successfully used to build approximations of an 
object’s geometry. In particular, Hubbard describes a 
collision detection algorithm for interactive 
applications based on sphere-trees [7] and shows three 
algorithms for automatically building this structure. 
Recently, Bradshaw has proposed a very efficient 
method for building sphere-trees that combines a set of 
sphere reduction algorithms [8]. 

Currently, image-based techniques which can be 
executed on graphics processing units (GPUs) have 
also received attention [14]. However, reading buffers 
from GPU memory is usually a very slow operation, 
making buffer readbacks unappealing [1].  

Although many approaches have been proposed for 
collision detection, few papers have been published on 
crowded environments, taking the level of interactivity 
achieved during the simulations into account. By 
contrast, in our experiments, we implemented a highly 
interactive environment composed of a large number 
of colliding 3D objects, where the user can navigate 
and interact with them using a force feedback joystick. 

 
3. Broad phase collision detection 
 

In the following sections, we initially investigate a 
Brute Force algorithm for the broad phase, only for 
purpose of comparison with other well-known broad 
phase methods. This algorithm is used to test all the 
objects’ bounding volumes for intersection and is 
O(n²). Then, to improve on this initial algorithm, in 
Section 3.1 we implemented two spatial partitioning 
data structures: grids and octrees. Finally, in Section 
3.2, we implemented the Sweep & Prune algorithm, an 
approach that does not partition the space. 

 
3.1. Grid and Octree algorithms 

 
A simple way to enhance the initial approach is to 

partition the virtual environment space into cells and, 
for each cell, execute the Brute Force method. We 
have implemented an algorithm that uses regular 3D 
grids to partition the space into voxels [4]. Each voxel 
contains a list of objects within its region and has a 
Brute Force method to compute a set of pairs of 
objects whose BVs intersect. The main advantage of 
using grids is that these data structures can be used 
statically. It means that the grid granularity does not 
have to be always updated, and the objects can be 
updated in the grid very quickly. In fact, the 
granularity may never change and can be computed in 



a pre-processing time. However, grids have still 
serious limitations: the difficulty of estimating the best 
grid granularity for different scenarios, the likelihood 
of objects to belong to more than one cell (requiring 
extra use of memory), and the fact that grids do not 
adapt themselves to objects’ distribution in a scene.  

To build the grid, we first create an AABB that 
surrounds all the space considered for collision. Then, 
we fill this AABB with smaller, non-overlapping 
AABBs, depending on the grid granularity, so that they 
cover all the space. Each of these AABBs corresponds 
to the voxels of the grid. Therefore, finding out the 
objects’ location inside the grid is straightforward, by 
intersecting their bounding volume with the 
correspondent voxel. The center of the objects’ 
bounding volumes may indicate an initial voxel to be 
tested. After that, a flooding algorithm is used to find 
out the remaining cells. Once all the objects are 
organized into the voxels, we loop through the voxels 
(not all of them, instead, when we update the objects in 
the grid, we keep track of those cells that had updates 
and pass them to the collision detection method) and 
test the objects in the voxels’ list for intersection. For 
this, we invoke the Brute Force method for each voxel.  

The grid may be extended in a hierarchical way to 
build octrees. With this in mind, we extended our grid 
implementation to support an octree structure, 
partitioning the cells in a new grid when required (with 
granularity 2x2x2). Differently from the grids, octrees 
have the property of self-adapting to the objects’ 
distribution. However, the cost for this is very high 
because the structure needs to be updated constantly. 
In our implementation, the octree is updated at each 
frame, what causes a significant overhead. Another 
problem is that the octree requires large amount of 
memory due to the number of cells and because objects 
may be located in more than one cell. 

The process of building the octree structure is as 
follows. Firstly, an AABB that surrounds the space 
considered for collision is created and becomes the 
root of the tree. After this, all the objects inside the 
root node are inserted in the node’s object list, and the 
node is partitioned in a 2x2x2 grid. Each voxel of the 
grid becomes a new octree node, and this process is 
repeated using the objects of its parent’s list, until a 
target depth (the distance from the root) is reached. 
After building the octree structure, we start processing 
the root node by traversing the tree down the leaves. 
Whenever a leaf node is reached, the Brute Force 
method is invoked to compute the object pairs among 
the objects, within the leaf. Otherwise, the algorithm 
recurs on the current node’s children. 

 

3.2. Sweep & Prune algorithm 
 
An AABB can be represented by its three intervals 

(one for each axis) and, in particular, two AABBs 
intersect if and only if all their three intervals intersect 
[6]. The Sweep & Prune algorithm keeps all the 
AABBs’ intervals in three separated sorted lists (one 
for each axis) and takes advantage of frame coherence. 
It means that the lists from the previous frame are 
nearly sorted in the current frame, because the objects 
do not move too far between frames. An insertion sort 
algorithm is then used to keep the lists sorted in nearly 
linear time [11]. Analysing the adjacent intervals in the 
lists can consequently derive all the colliding object 
pairs for the broad phase. In particular, the algorithm 
we implemented is described in [1] and does not need 
to tune any parameters, such as the grid granularity or 
the octree depth, for example. In some circumstances, 
however, we observed that there is a likelihood of 
generating some specific objects’ distributions in the 
scene, such as line arrangements of objects. As a 
result, this behaviour may cause many intersection 
tests, where most of the intervals in one of the lists do 
intersect. In spite of this, the Sweep & Prune algorithm 
updates its structure (specifically the three lists) in a 
fast manner and requires less intersection tests than the 
methods discussed previously.  

 
4. Narrow phase collision detection 
 

In this Section, we implement a robust algorithm 
based on BVHs for the narrow phase [1]. We choose 
sphere-trees as BVHs because spheres are rotationally 
invariant, the intersection test between them is 
computationally very cheap, and there are many 
efficient algorithms for building sphere-trees. The 
simplest algorithm to build sphere-trees relies on 
octrees and is described in Section 4.1. Section 4.2 
presents the Combined algorithm, a more sophisticated 
approach that integrates a set of sphere reduction 
algorithms to compute a very accurate approximation. 
We assume that the root of the sphere tree (level 0) 
corresponds to the object’s bounding sphere. 
 
4.1. Spherical Octree algorithm 
 

A modified version of the octree structure 
developed for the broad phase can also be utilized in 
the narrow phase. We adapted our octree structure to 
partition polygons of an object instead of objects of a 
scene, that is, we need to test the polygons against 
AABBs, which represent the octree’s cells. The octree 
can then be used as a hierarchical approximation of the 



object, where the object’s AABB is the root. Once the 
octree is built, a straightforward way for building a 
sphere-tree is to circumscribe each node of the octree, 
namely spherical octrees. In (b) and (c) of Figure 1, are 
shown the object bunny’s spherical octree with 4 and 5 
levels, respectively. Although this subdivision process 
is fast, octrees need many levels of subdivision to 
converge to the object’s geometry. Consequently, 
spherical octrees may be deep, when compared to the 
approaches from Section 4.2, and does not generate an 
acceptable approximation. As a result, this approach 
degrades the performance of our narrow phase 
algorithm. 

4.2. Combined algorithm 
 

Motivated by the fact that spherical octrees do not 
fit objects tightly (because they do not take into 
account the object’s geometry), Hubbard proposed an 
algorithm based on the medial axis (a skeleton-like 
shape structure based on the object’s geometry), and 
uses this structure to build sphere-trees [7]. 

Many algorithms to build tight sphere-trees have 
been published, including variations of Hubbard’s 
algorithm. For example, a simple way to enhance the 
Spherical Octree algorithm is to use hierarchical grids 
instead of octrees, allowing more freedom in the 
subdivision, and, additionally, optimizing the 
orientation of the grid and the size of the spheres. The 
algorithms Merge, Burst and Expand are all variations 
of Hubbard’s algorithm. All these algorithms improve 
on Hubbard’s algorithm by reducing the number of 
spheres, each in a different way, so that they generate 
tighter sphere-trees. Another relevant algorithm is the 
Spawn algorithm, which attempts to reduce the number 
of spheres in the sphere-tree, although it does not use 
the object’s medial axis. Bradshaw implemented an 
approach that allows the use of different sphere 
reduction algorithms in conjunction [8]. In this way, 
for each set of spheres, the algorithm searches for the 
approach which results in the lowest error, converging 
to a very tight approximation of the object (Figure 2). 

5. Scenarios of the application 
 

The environment of the application is represented 
by a room with dimensions 100x25x100, which is 
populated with a large number of moving objects 
(from 100 to 4000), whose dimensions are 
approximately 1x1x1. The scenario is composed of 
two types of objects: boxes (composed of 12 triangles) 
and bunnies (composed of 1500 triangles). In Figure 3 
is exhibited one of our scenarios with the avatar 
located in the center of the scene, circumscribed by a 
circle. 

Each object in the environment has linear velocity 
and is not allowed to rotate. Thus, the AABBs do not 
need to be recalculated. When objects collide, one or 
more components of their velocities are negated as a 
response to the collision. The user of the application 
can control an avatar through a joystick with force 
feedback. A virtual joystick was also implemented so 
that the user can realize the latency of the movements 
applied to the real joystick. Additionally, the real 
joystick offers to the user a great immersion, 
particularly when there is a collision between the 
avatar and another object in the scene.  

            (a)                         (b)                         (c) 
Figure 1. The object’s geometry and the 
object’s spherical octree with 4 and 5 levels 
are shown in (a), (b), and (c), respectively. 

            (a)                         (b)                         (c) 
Figure 2. Sphere-tree generated using the 
Combined algorithm with 2, 3, and 4 levels are 
shown in (a), (b) and (c), respectively. 

Figure 3. One of the scenarios implemented to 
run the experiments. 



6. Experiments and results 
 

The scenarios we designed to carry out the 
experiments were implemented with the graphics 
package Java3D [15]. The experiments were 
conducted by varying the number of objects and the 
algorithms for collision detection. These experiments 
were made on a 3.06 GHz PC with 768 MB of 
memory. Two different types of movements were 
implemented (in the plane XZ and in the space XYZ), 
but similar results were obtained. Therefore, only the 
results for the movements in the space XYZ are 
presented. The algorithms’ performance was evaluated 
based on the average frame rate generated in each 
experiment. For calculating this value, we considered 
only the total time needed to process the collision 
detection. Actually, this value includes the time to 
update the structures involved in the detection, the time 
to process the broad phase algorithm, and the time to 
process the narrow phase. 

Initially, we carried out extensive experiments 
exclusively using broad phase algorithms. The 
collision response was implemented applying a 
heuristic algorithm that considers the AABBs’ 
intervals and determines which components should be 
negated. We evaluated four algorithms: Brute Force, 
Grid, Octree and Sweep & Prune. It is important to 
note that the algorithms that use grids and octrees need 
specific parameters: grid granularity and octree depth, 
respectively. For the scenarios implemented, the best 
parameters found in our experiments were a 
granularity of 10x4x10 and a depth of 3 for the grid 
and octree, respectively. We use these parameters to 
compare the broad phase algorithms. 

The performance curve of the Brute Force, Octree, 
and Grid algorithms, with the number of objects 
varying from 100 to 500, is shown in Figure 4, where 
we can notice the superior performance achieved by 
partitioning data structures (grid and octree) when 
compared to the Brute Force algorithm. Furthermore, 
in this experiment, the Grid algorithm has superior 
performance over the Octree algorithm. For example, 
for 500 objects, the Grid algorithm has a performance 
of 12fps, while the Octree algorithm achieves a rate of 
approximately 34fps. This happens because the octree 
is dynamically built at each frame, while the grid is 
built in a pre-processing time and is not updated during 
the execution of the application. 

Although the superior performance of the Grid 
algorithm over the Octree one, the former still presents 
serious performance limitations when compared to the 
Sweep & Prune algorithm (Figure 5). The latter 
reaches a high frame rate without drastically degrading 

its performance while the number of objects increases. 
For 1000 objects, for example, while the Grid 
algorithm has a performance of approximately 14fps, 
the Sweep & Prune algorithm achieves a rate of 
approximately 54fps. This demonstrates that this 
approach is not only fast, but also scalable and, 
therefore, the most suitable to detect collision in the 
broad phase of our interactive environment. 

To analyze the differences between the Grid and the 
Sweep & Prune algorithms, we compared the time 
spent on updating the data structures and on processing 
the broad phase during 500 frames of the animation 
(Figure 6). In particular, there is a huge disparity 
between both algorithms in the time spent on 
processing the broad phase. The Sweep & Prune 
algorithm computes the colliding pairs in much less 
time.  The data structure updating time is relatively 
greater in the Sweep & Prune algorithm than in the 
Grid one (the former varies from approximately 78% 
to 98%, whereas the latter varies from 53% to 62%). 
This fact motivated us to explore a hybrid approach 

Figure 4. Performance curves of broad phase 
collision detection algorithms (Brute Force, 
Octree, and Grid). 
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Figure 5. Performance curves of broad phase 
collision detection algorithms (Octree, Grid, 
and Sweep & Prune). 
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where the Sweep & Prune and the Grid algorithms are 
combined (each voxel of the grid has a Sweep & Prune 
method to compute the colliding pairs). However, the 
results found were inferior to the ones obtained using 
only the Sweep & Prune algorithm. 

New experiments were conducted, now processing 
the narrow phase too. In this stage, we used 
approximations of the objects and carried out a 
refinement process in levels of details for the collision 
detection, by using sphere-trees. To automatically 
build the sphere-trees, two specific algorithms were 
used: Spherical Octrees and Combined. When there is 
a collision between two sphere-trees, the pairs of 
spheres (one from each sphere-tree) that do intersect 
are used to assist in the collision response (they help to 
choose which components of the velocity will be 
negated). The experiments in the narrow phase used 
Sweep & Prune, the algorithm that achieved the best 
performance in the previous tests for the broad phase. 

The octree implemented in the broad phase was 
then extended to build sphere-trees. However, sphere-
trees built in this manner are inaccurate, because they 
need many levels to converge to the object’s geometry. 
For this reason, we built octrees with 4 and 5 levels to 
generate satisfactory approximations of the object 
bunny. On the other hand, due to the simplicity of the 
object box´s geometry, for generating its geometric 
approximation we built an octree with 2 levels only. 
As an alternative to this approach, we also used the 
Combined algorithm, presented at Section 4.2. This 
algorithm generates very accurate approximations of 
the object bunny. In addition, it provides a way to 
build sphere-trees with 2 and 3 levels, with 
approximations even better than the ones built with the 
Spherical Octree algorithm with 4 and 5 levels. 

The results we have obtained with the 
implementation of these four approaches (Spherical 
Octree algorithm with 4 and 5 levels; Combined 
algorithm with 2 and 3 levels) are shown in Figure 7. 
The performance of the narrow phase algorithm 
supported by sphere-trees is directly affected by the 
structure’s depth. Therefore, the Combined algorithm 
is more suitable for our scenarios because it builds 
more accurate sphere-trees, with low depth.  

Figure 8 shows the time spent by the collision 
detection process (data structure updating, as well as 
broad and narrow phases) during 500 frames of the 
animation. For this experiment, we used the Sweep & 
Prune algorithm and sphere-trees with 2 levels, built 
by the Combined algorithm. Note that the time needed 
to update the lists of the Sweep & Prune algorithm 
clearly dominates the time spent during collision 
detection. Also, the time needed for the broad phase 
was greater than the one spent on the narrow phase. 

Figure 6. Time spent on updating the data 
structures and processing broad phase 
algorithms during 500 frames of the 
animation. 
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Figure 7. Performance curves of the hybrid 
algorithm with different approaches for 
building sphere-trees. 
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Figure 8. Time spent on updating the data 
structures and processing the collision 
detection, during 500 frames of the animation.
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To evaluate then the scalability of our approach 
(besides speed and accuracy), we combined the Sweep 
& Prune algorithm (broad phase) with sphere-trees 
(narrow phase) in a scenario extremely crowded, with 
up to 4000 moving objects. Our experiments 
demonstrate that with a slightly more than 2000 
objects, it is possible to obtain a performance of 
approximately 9fps (without rendering). For 4000 
objects, however, the performance was unacceptable 
(approximately 2fps). 

Finally, we evaluated the performance of the Sweep 
& Prune algorithm combined with sphere-trees, 
including the rendering process. Figure 9 shows the 
frame rate obtained considering the total time needed 
to render the scenes. Note that even when the 
environment is populated by 1000 moving objects, it is 
still possible to obtain a rate greater than 10fps, using 
sphere-trees with 2 and 3 levels. More specifically, 
sphere-trees with 2 levels resulted in a better frame rate 
(approximately 14fps) when compared to sphere-trees 
with 3 levels (approximately 12fps). 

 
7. Usability Analysis 
 

Usability is an important aspect to analyse the level 
of interactivity of virtual environments and is used in 
this work to evaluate the performance of the hybrid 
algorithm, based on the experiments from Section 6.  

According to ISO 9241-11, the dimensions of 
usability are: effectiveness, efficiency, and satisfaction. 
Effectiveness measures usability from the point of 
view of the output of the interaction. Efficiency relates 
effectiveness of interaction to resources expended. 
Satisfaction refers to the comfort and acceptability of 
using the system. We validated the quality of the 
output of the interaction (perceptions) based on level 
of usability of the system implemented using the 
effectiveness (frame rate) and satisfaction (subjective 
user analysis) criteria [16].  Minimal frame rates that 

range from 6Hz to 20Hz are suggested as acceptable 
frame rates for interactive virtual environments [11], 
whereas values spanning from 60Hz to 75Hz are 
presented in the literature as theoretical targets still to 
be reached [17].  

Table 1 shows the overall level of effectiveness and 
satisfaction obtained with the implemented hybrid 
algorithm. The results indicate a high level of user 
satisfaction for scenarios with up to 350 objects and a 
very good satisfaction for simulations with the number 
of objects ranging from 350 to 500 (26 ≤ frame rate ≤ 
40). User satisfaction was also good for scenarios with 
the number of objects ranging from 500 to 1000 (10 ≤ 
frame rate ≤ 25). 

 
Table 1 – The overall level of effectiveness and satisfaction 
obtained with the hybrid algorithm 

Effectiveness /               
Frame Rate (fps) 

Level of Satisfaction / 
Performance 

< 10 low 
≥  10 and ≤  25 good 
≥  26 and ≤  40 very good 

> 40 high 

 
8. Conclusions and future work 
 

We implemented and evaluated the performance of 
four algorithms for the broad phase (Brute Force, Grid, 
Octree, and Sweep & Prune). The Sweep & Prune 
algorithm achieves the best performance, and among 
the algorithms we tested is the most scalable for broad 
phase collision detection in interactive environments. 

In the narrow phase, we used an algorithm 
supported by sphere-trees. Two algorithms for building 
these structures (Spherical Octree and Combined) were 
compared. We showed that the Combined algorithm 
builds much tighter sphere-trees, and therefore is more 
suitable for narrow phase collision detection in 
interactive environments. We also evaluated a hybrid 
algorithm that uses the Sweep & Prune algorithm and 
sphere-trees. This approach is fast (it carries out only 
simple intersecting tests), scalable (the Sweep & Prune 
algorithm discards non-intersecting objects very 
efficiently) and accurate (the Combined algorithm 
generates very precise sphere-trees). The hybrid 
algorithm was successfully used in crowded interactive 
environments. We were able to achieve very good 
frame rates (between 26 and 40) for scenarios with up 
to 500 objects and good frame rates (between 10 and 
25) for scenarios with 1000 objects. 

Finally, according to our analyses and experiments, 
the proposed hybrid algorithm achieves a much higher 
performance than other combined methods for the 
broad and narrow phases. For example, the Grid and 

Figure 9. Performance curves of the hybrid 
algorithm, including rendering. 
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Spherical Octree algorithms obtain low values for 
accuracy, scalability and speed; the Grid and 
Combined algorithms obtain good levels of accuracy, 
but low scalability and speed; and the Sweep & Prune 
and Spherical Octree algorithms obtain intermediate 
values for speed and scalability, but with low accuracy. 
Besides, the investigation of pure methods shows that 
for the broad phase the Sweep & Prune algorithm is 
about 75% faster than the Grid one; for the narrow 
phase when using the Spherical Octree algorithm with 
4 levels (instead of 5 levels) we speed up the algorithm 
by about 56%, and when using sphere-trees with 3 
levels, built by the Combined algorithm (instead of 
Spherical Octrees with 4 levels), we gain 
approximately 45% in speed. Additionally, sphere-
trees built by the Combined algorithm are much more 
accurate. 

As future work, we aim at improving the Sweep & 
Prune algorithm motivated by our experiments using 
the hybrid algorithm. These experiments demonstrate 
that the time needed to update the interval lists of the 
Sweep & Prune algorithm dominates the total time 
spent during the collision detection. Additionally, we 
plan to optimize the Grid and Octree algorithms for the 
broad phase, as well as to implement other spatial 
partitioning data structures such as BSP-trees. As an 
improvement on the narrow phase, an interruptible 
algorithm may be also used to provide more control 
upon the time spent for collision detection in 
interactive environments. 
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