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Figure 1. Example of a parabolic polygon with 10 arcs (left), our estimation of their afÞne length
(middle) and afÞne curvature (right).

Abstract

Geometry processing applications estimate the local ge-
ometry of objects using information localized at points.
They usually consider information about the normal as a
side product of the points coordinates. This work proposes
parabolic polygons as a model for discrete curves, which in-
trinsically combines points and normals. This model is nat-
urally afÞne invariant, which makes it particularly adapted
to computer vision applications. This work introduces es-
timators for afÞne length and curvature on this discrete
model and presents, as a proof�of�concept, an afÞne in-
variant curve reconstruction.
Keywords: AfÞne Differential Geometry, AfÞne Curvature,
AfÞne Length, Curve Reconstruction.

1. Introduction

Geometric objects are represented by discrete structures
for computer applications. These structures usually rely on
pointwise information combined with adjacency relations.
Most geometry processing applications require the normal
of the object at each point: either for rendering [7], evolu-
tion [9], or numerical stability of reconstruction [10]. Mod-
ern Geometry acquisition processes for curves or surfaces
usually provide measures of the normals together with the
point measures. These normals can also be robustly esti-
mated only from the point coordinates [8, 11].

However, the normal or tangent information is usually
considered separately from the point coordinate, and the

deÞnition of the geometrical object depends rather on the
point coordinates. Although modelling already makes in-
tensive use of this information, in particular with Bézier
curves, only recent developments in reconstruction prob-
lems proposed to incorporate these tangents as part of the
point set deÞnition [10].

In this work, we propose a discrete curve representation
based on points and tangents: the parabolic polygons, intro-
duced in Section 2. This model is naturally invariant with
respect to afÞne transformations of the plane. As opposed to
implicit afÞne representations [12], our representation uses
only local information. This makes it particularly adapted
to computer vision applications, since two contours of the
same planar object obtained from different perspectives are
approximately afÞne equivalent.

In Section 4, we propose geometric estimators that are
afÞne invariant, which makes the model effective for appli-
cations. The theoretical validity of our estimators is veriÞed
on representative cases, as can be seen in Section 5. In Sec-
tion 6, the practical validity of the estimators is veriÞed on
samples of analytic curves.

The only works we are aware about afÞne curvature es-
timators are due to Calabi, Olver, Tannenbaum et al. [4, 3]
and Boutin [1]. They estimate afÞne curvature from Þve
consecutive samples, by interpolating these points by a
conic. The afÞne curvature at the central point is then es-
timated by the afÞne curvature of that conic. They further
prove that this estimator derives from discrete afÞne volume
forms, which are the only afÞne invariant forms for points.
With the conciseness of parabolic polygons, we estimate the
afÞne curvature from just three consecutive points, which is
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well suited for applications such as reconstruction, interpo-
lation and blending.

For the application in curve reconstruction of Section 7,
we changed the distance computation in [5] by our afÞne es-
timates. This leads to an afÞne invariant curve reconstruc-
tion, which works well on synthetic examples. Moreover,
we observed that the introduction of the curvature in the al-
gorithm improves the stability of the reconstruction, thus
pledging for the validity of our afÞne curvature estimator.

2. Parabolic polygons

When we consider just the position of the sample points
of a curve as the data, it is natural to connect them by line
segments, thus forming a Euclidean polygon. In our model,
each point carries more information: Besides its position,
we know also its tangent line. Then it is natural to connect
a pair of points by an arc of parabola that passes through
and is tangent to the tangent line at each point. The �poly-
gon� thus formed will be called a parabolic polygon (see
Figure 1).

Consider a curve γ in the plane. If li and li+1 are the
tangent lines at xi and xi+1 of a convex arc of γ, then li is
not parallel to li+1. We shall assume that we are given a Þ-
nite sequence of points {x1, · · · ,xn} and lines {l1, · · · , ln}
passing through the points such that li is not parallel to li+1,
for any 1 ≤ i ≤ n.

zi

xi+1 xi

Figure 2. Support triangle.

Support point and support triangle. Denote by zi the
point of intersection of li and li+1. This point is called the
support point and the triangle (xi, zi,xi+1) is called the
support triangle . As pointed out in [4] the cubic root of
the area Ai of the support triangle is a good measure of the
distance between (xi, li) and (xi+1, li+1).

Parabolic arcs. For each pair of consecutive indexes
(i, i + 1), denote by Pi the unique parabolic arc passing
through xi and xi+1 with tangent lines li and li+1 at these
points. The parabolic polygon obtained by the concatena-
tion of Pi, 1 ≤ i ≤ n − 1, will be denoted by P .

3. AfÞne length and curvature

This section quickly recalls the deÞnitions of the relevant
afÞne quantities. The reader will Þnd a detailed presentation
of afÞne geometry in Buchin�s book [2].

AfÞne length. Consider a smooth curve γ in the plane.
Take a convex arc of γ and parameterize it by x(t), t0 ≤
t ≤ t1, with x′(t) ∧ x′′(t) > 0. The number

s(t) =
∫ t

t0

x′(t) ∧ x′′(t)
1
3 dt

is called the afÞne parameter of the arc. Observe that s can
be characterized by the equation

x′(s) ∧ x′′(s) = 1. (1)

The afÞne length L of the arc is deÞned by L = s(t1) −
s(t0).

v(s)

n(s)

x(s)

Figure 3. AfÞne tangent v(s) and normal n(s).
The area of the parallelogram is equal to 1.

AfÞne tangent and normal. The Þrst derivative x′(s) is
called the afÞne tangent and is tangent to the curve. It will
be denoted by v(s). The second derivative x′′(s) is called
the afÞne normal and will be denoted by n(s). Observe
that the afÞne normal is not necessarily perpendicular to the
curve in the Euclidean sense.

AfÞne curvature. Differentiating equation (1), we obtain
that x′(s) and x′′′(s) are co-linear. The afÞne curvature
μ(s) is deÞned by the equation

x′′′(s) = −μ(s)x′(s).

One can also deÞne the afÞne curvature by μ(s) =
x′′(s) ∧ x′′′(s).

AfÞne behaviour of inßections. In Section 7, it will be
important for us to understand the behaviour of the afÞne
quantities near a higher order tangent. This behaviour can
be well observed in the following example:

Consider the curve x(t) = (t, tn), n ≥ 3, 0 ≤ t ≤ 1,



Figure 4. The afÞne normal of a cubic near its
inßection point.

which has a higher order tangent at t = 0 (see Figure 4).
Easy calculations show that, for c > 0,

x(s) =
(
cs

3
n+1 , cns

3n
n+1

)
is an afÞne parameterization of the curve. Thus we have
that the afÞne tangent

v(s) =
(

3c

n + 1
s

2−n
n+1 ,

3ncn

n + 1
s

2n−1
n+1

)

converges to an inÞnite length vector in the positive x-
direction, when s → 0. The afÞne normal

n(s) =

(
3c (2 − n)

(n + 1)2
s

1−2n
n+1 ,

3ncn (2n − 1)

(n + 1)2
s

n−2
n+1

)
.

also converges to an inÞnite length vector in the x-direction,
but in the negative sense (see Figure 4). The afÞne curvature
is given by

μ(s) =
(n − 2) (2n− 1)

(n + 1)2
s−2.

4. AfÞne estimates

We will now propose an afÞne length estimator and an
afÞne curvature estimator for a parabolic polygon.

AfÞne length. Denote by Li the afÞne length of the
parabolic arc Pi and by ni its afÞne normal. In [4], it is

proved that Li = 2A
1
3
i , where Ai is the area of the support

triangle. The afÞne length of a parabolic polygon P is the
sum of the afÞne lengths Li of the parabolic arcs Pi.

AfÞne normal. The expression for ni is given in the fol-
lowing lemma:

Lemma 1 Denote by vi,1 and vi,2 the afÞne tangents of
the parabola Pi at xi and xi+1, respectively. If the support
triangle (xi, zi,xi+1) is positively oriented, then

vi,1 = − 2
Li

(xi − zi)

vi,2 =
2
Li

(xi+1 − zi)

If the support triangle is negatively oriented, the signs must
be interchanged. In any case

ni =
2
L2

i

(xi + xi+1 − 2zi) .

Proof. Just observe that the parabola

γ(s) = xi + svi,1 +
s2

2
ni

is parameterized by arc length and passes through xi and
xi+1 with tangent lines li and li+1, respectively. �

AfÞne curvature. Consider a convex arc C in E2. Then∫
C

μds =
∫

C

n′(s) ∧ n(s)ds

can be approximated by∑ (
n(s+Δs) − n(s)

Δs
∧ n(s)

)
Δs =

∑
n(s+Δs) ∧ n(s).

We propose as a deÞnition of the integral of the afÞne cur-
vature along a parabolic polygon the sum

μ(P ) =
n−1∑
i=2

ni−1 ∧ ni.

5. Convergence issues

Consider a convex arc C in E2. Let (xi, li), 1 ≤ i ≤ n
be a sampling of the curve, where li is the line tangent to C
at xi. Assume that the sampling points are equally spaced,
i.e., that the afÞne length between sample points along the
curve is equal to L/n, where L is the afÞne length of the
curve. We say that the afÞne length estimator is convergent
if

∑n−1
i=1 Li converge to the afÞne length L of the curve,

when n → ∞. And that the afÞne curvature estimator is
convergent if μ(P ) converges to

∫
C μ(s)ds, when n → ∞.

In [4, p.14], it is shown the convergence of the afÞne
lengths estimator. In the rest of the section, we shall con-
sider the particular case of constant afÞne curvature curves.
For these curves, we compute explicitly the estimators to
show the convergence of the afÞne length and of the afÞne
curvature. The experiments of Section 6 also indicate that
our afÞne curvature estimator is convergent.
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(a) Estimated afÞne length vs number of samples.
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(b) Estimated afÞne curvature integral vs number of samples.

Figure 5. Convergence of the estimators for the positive curvature case with R = 1.

Figure 6. Fifty afÞne equally spaced samples
of an ellipse.

Positive curvature. In this example, we consider the case
of a curve with constant positive afÞne curvature (see Fig-
ure 6). By making an afÞne transformation of the plane,
we can assume that this curve is a circle. Consider points
(xi, yi), 1 ≤ i ≤ n, in a circle of radius R at an afÞne dis-
tance s = L/n, where L = 2πR

2
3 is the afÞne length of

the circle. The afÞne curvature of this circle is μ = R−4
3 .

The central angle determined by two consecutive points is
2α = 2π

n .
Simple calculations show that the afÞne length of the arc

of parabola Pi is given by

Li =
2R

2
3 sin α

cos
1
3 α

and that the afÞne normal is orthogonal to the chord con-
necting (xi, yi) and (xi+1, yi+1), with norm

||ni|| = R−1
3 cos−

1
3 α.

Thus the estimated afÞne curvature is given by

ni ∧ ni+1 = R−2
3 cos−

2
3 (α) sin (2α) .

The estimated afÞne length of the circle is then

n−1∑
i=1

Li = 2R
2
3 (n − 1)

sin
(

π
n

)
cos

1
3

(
π
n

)

which converges to the afÞne length of the circle when n →
∞ (see Figure 5(a)). And the estimated afÞne length

μ(P ) = (n − 2)R−2
3 cos−

2
3

(π

n

)
sin

(
2π

n

)

converges to 2πR−2
3 = Lμ, when n → ∞ (see Fig-

ure 5(b)).

Figure 8. Twenty afÞne equally spaced sam-
ples of a hyperbola.

Negative curvature. In this example, we consider the
case of a curve with constant negative afÞne curvature (see
Figure 8). By making an afÞne transformation of the plane,
we can assume that this curve is a hyperbola xy = c,
for some c > 0. Consider points (xi, yi), 1 ≤ i ≤ n,
in the hyperbola at an afÞne distance s = L/n, where
L = (2c)

1
3 ln (xn/x1) is the afÞne length of the arc of hy-

perbola between (x1, y1) and (xn, yn). The afÞne curvature
of this hyperbola is μ = −(2c)−

2
3 .

Denote by r = xi+1
xi

= yi

yi+1
. From the fact that the

afÞne lengths between (xi, yi) and (xi+1, yi+1) along the
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(a) Estimated afÞne length vs number of samples.
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(b) Estimated afÞne curvature integral vs number of samples.

Figure 7. Convergence of the estimators for the negative curvature case, with c = 1.
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(a) Estimated afÞne length vs number of samples.
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(b) Estimated afÞne curvature integral vs number of samples.

Figure 9. Convergence of the estimators for a cubic with y = x3, x ∈ [0, 2
3

4
√

2].

hyperbola is (2c)
1
3 ln(r), one conclude that r does not de-

pend on i. Straightforward calculations shows that the area
of the support triangle deÞned by (xi, yi) and (xi+1, yi+1)
is given by c (r−1)3

2r(r+1) and so the afÞne length of Pi is given
by

Li =
(

4c

(r + 1)r

) 1
3

(r − 1).

Also, the afÞne normal to Pi is given by

ni =
(

r2

2(r + 1)c2

) 1
3

(xi, yi+1) ,

and so

ni−1 ∧ ni =
(

r + 1
4cr2

) 1
3

(1 − r).

We conclude that
n−1∑
i=1

Li = (n − 1)
(

4c

(r + 1)r

) 1
3

(r − 1)

converges to L (see Figure 7(a)). And that the estimated
afÞne curvature of the arc

n−1∑
i=2

ni−1 ∧ ni = (n − 2)
(

r + 1
4cr2

) 1
3

(1 − r)

converges to (2c)−
1
3 ln (xn/x1) = Lμ (see Figure 7(b)).

6. Experimental results

We have tested the above estimates on samples analytic
curves. In Section 5, the cases of constant afÞne curvature
were tested. In this section, we test the cubic y = x3, 0 ≤
x ≤ 2

3
4
√

2.
In Figure 9, we can see the convergence of the afÞne

length and of the afÞne curvature when the number of sam-
ples grows. It is interesting to observe that the afÞne length
is a non-increasing function of the number of samples, as



Figure 10. Invariance with respect to the afÞne transform x �→ 3
4x, y �→ 4

3y: our estimators gave
exactly the same values for both cases: lengths 0.254381, 0.250007, 0.250001 and 0.250000, curvatures
11.0122, 1.40326, and 0.583464.

pointed out in [4]. Another important property of our esti-
mators is their afÞne invariance, which can be observed in
Figure 10.

7. AfÞne curve reconstruction

In this section, we consider the following problem to val-
idate our parabolic polygon model and the related afÞne es-
timators: Given a Þnite sequence of points {x1, · · · ,xn}
and tangent lines {l1, · · · , ln} passing through the points,
we look for a parabolic polygon that is in some sense close

x1

x2

x3

x4

x5

x6

x

Figure 11. Point x5 is at the smallest afÞne
distance of x, but it is rejected because it
would induce a big afÞne curvature.

to the original curve. We propose an algorithm that will
combine the afÞne invariance of our model with the ability
to use the tangent as intrinsic information. The estimator of
afÞne curvature proposed above is used in the algorithm in
a way similar to [6, 5].

The algorithm works as follows: In the Þrst step of the
algorithm one look at the pair (xi, li) , (xj , lj) which have
the smallest afÞne distance. Then we proceed in a greedy
fashion to Þnd the next pair (xk, lk) which is at a minimum
afÞne distance of one of the ends of the reconstructed curve.
We validate he optimal pair (xk, lk) as follows:

1. If the afÞne curvature of arc (xi, li) , (xj , lj) , (xk, lk)
is smaller than threshold μmax, the point is accepted.

2. If the afÞne curvature is bigger than μmax, two things
may occur:

(a) either the pair (xk, lk) induces an undesirable de-
viation, and the point is rejected,

(b) or we are close to a higher order tangent, such as
an inßection point, and the point is accepted.

As we have seen in Section 3, cases 2(a) and 2(b) can be
characterized by the product nij ∧ njk between the afÞne
normals of each parabolic arc: nij ∧ njk is small in case
2(a) and big in case 2(b) (see Figure 11).

If the point is rejected, we continue our greedy selection
for completing the curve with another pair (xk, lk). If the



(a) µmax = 1. (b) µmax = 10. (c) µmax = 105.

Figure 12. Reconstruction close to an inßection point.

point is close to a higher order tangent, the algorithm com-
pletes the curve with (xk, lk), but stops on that end (Fig-
ure 12), as explained below.

In our algorithm, we reconstruct only the convex arcs
of the curve, since passing through inßection points is very
delicate. The parameter μmax controls how much we can
get close to an inßection point. The bigger we take μmax,
closer we can get to the inßection point (see Figure 12). But
we cannot take μmax very big because in this case we would
accept undesirable deviations (see Figure 11).

We compared our parabolic polygon model with afÞne
estimates with the classical Euclidean polygon model. The
algorithm used for the Euclidean reconstruction is based
on [5], using the curvature as described in the afÞne case
but not the information of the tangents. In Figure 13, we can
observe how the intrinsic use of the tangent information of
our model improves the result. In Figure 14, we can check
the afÞne invariance of the reconstruction algorithm, and
the non�afÞne invariance of its Euclidean version. More-
over, we can see the importance of the tangent information
at cusps.

8. Conclusion

In this work we propose the parabolic polygon as a
model for discrete curves that combine intrinsically the po-
sition and the tangent line of each sample. This model
has the property of being afÞne invariant, which makes it
particularly interesting for computer vision. Based on this
model, we propose an afÞne length estimator and an afÞne
curvature estimator. The validity of these estimators was
checked on a curve reconstruction application.

As future work, we intend to consider the corresponding
problems in 3D. One of the important questions in this con-
text is how to estimate the afÞne area and curvatures of a
surface given by sample points and normals.
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(a) AfÞne reconstruction. (b) Euclidean reconstruction.

Figure 13. Our intrinsic use of tangents improves the reconstruction.

(a) AfÞne reconstruction. (b) Euclidean reconstruction.

(c) AfÞne reconstruction. (d) Euclidean reconstruction.

Figure 14. AfÞne invariance of the reconstruction.
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